einfache Ableitung < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | Hallo Leute, habe eine "einfache" Differenzialrechung zu rechnen, die mich verzweifelt. |
4r² * a² - [mm] a^4
[/mm]
muss ich hier die 2 nach vorne stellen?
also 8r * a² - 4a
oder wie?
könnt ihr mir bitte helfen?
lg
|
|
|
|
Hallo,
> Hallo Leute, habe eine "einfache" Differenzialrechung zu
> rechnen, die mich verzweifelt.
> 4r² * a² - [mm]a^4[/mm]
>
Lautet die Funktion [mm] f(\red{r})=4r^2*a^2-a^{4} [/mm] ?
In dem Fall ist eine konstante Zahl.
> muss ich hier die 2 nach vorne stellen?
> also 8r * a² - 4a
>
> oder wie?
>
> könnt ihr mir bitte helfen?
>
> lg
Gruß
|
|
|
|
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 14:56 Sa 20.11.2010 | Autor: | patrick9000 |
was muss ich jetzt rechnen?
was bleibt konstant?
lg
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:59 Sa 20.11.2010 | Autor: | Loddar |
Hallo Patrick!
Du hast noch immer nich geklärt, nach welcher Variable hier überhaupt differenziert werden soll.
Die andere Variable wird dann als konstant angesehen.
Gruß
Loddar
|
|
|
|
|
Hallo Leute, ein Bekannter hat mir diese Übung gesendet. Angeblich kommt was mit 8r*a² ... raus? Kann das stimmen?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:06 Sa 20.11.2010 | Autor: | Tyskie84 |
Hallo,
in dem Fall wird nach r differenziert.
Dann lautet die Ableitung [mm] f'(r)=8r*a^2
[/mm]
Gruß
> Hallo Leute, ein Bekannter hat mir diese Übung gesendet.
> Angeblich kommt was mit 8r*a² ... raus? Kann das stimmen?
Soll es hier [mm] 8r*a^2\red{.....} [/mm] noch weiter gehen?
|
|
|
|
|
Cool, danke; Kannst du mir noch erklären wie man darauf kommt?
lg
|
|
|
|
|
Hallo,
> Cool, danke; Kannst du mir noch erklären wie man darauf
> kommt?
>
Also die Funktion lautet höchstwahrscheinlich [mm] f(r)=4r^2*a^2-a^{4}. [/mm] Jetzt soll nach r differenziert werden. a ist eine Konstante. Nach Faktorregel des Differenzierens gilt: [mm] f(x)=ax^{n} \to f'(x)=a*nx^{n-1}. [/mm] (a ist hier eine Zahl)
Angewendet auf deine Funktion bedeutet das: [mm] f(r)=a^2*4r^2-\blue{a^{4}} \to f'(r)=a^2*8r. [/mm]
[mm] \blue{a^{4}} [/mm] fällt beim Ableiten weg da die Ableitung einer Konstanten eine Zahl ist.
Klar?
> lg
Gruß
|
|
|
|
|
danke!!
wo ist am schluss das [mm] a^4 [/mm] hin?
lg
|
|
|
|
|
Hallo,
> danke!!
>
> wo ist am schluss das [mm]a^4[/mm] hin?
>
Das ist doch eine Konstante. Die fällt beim differenzieren weg.
Die Ableitung von f(x)=7 ist doch gerade f'(x)=0. Fällt also weg.
> lg
Gruß
|
|
|
|
|
Aufgabe | also wenn die Konstante allein steht fällt sie weg? Wenn sie mit einem "*" verbunden ist, bleibt sie einfach stehen? |
lg
|
|
|
|
|
Aufgabe | wieso wird hier aber:
4,73 [mm] x^5 [/mm] * e^-4,07x
y' = [mm] 4,73*5x^4 [/mm] * e^-4,07 + 4,73 [mm] x^5 [/mm] *(-4,07) *e^-4,07x |
Hier wird ja zuerst der erste Teil, dann der zweite abgeleitet, hier ist e aber keine konstante oder? bzw. hier gibt es keine konstante?
lg
|
|
|
|