e^x^2 und Fehlerfunktion < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:43 Mo 09.04.2012 | Autor: | volk |
Hallo,
ich habe ein paar Fragen zur Integration von [mm] \integral_{-\infty}^{\infty}{e^{-x^2} dx}.
[/mm]
Ich kann das ja in Polarkoordinaten lösen und bekomme dann [mm] \wurzel{\pi} [/mm] als Lösung. Ich habe mir bei Wikipedia die Fehlerfunktion angeguckt. Die ist ja so definiert: [mm] erf(z)=\bruch{2}{\wurzel{\pi}}\integral_{0}^{z}{e^{-r^2} dr}
[/mm]
Wenn ich das vergleiche stelle ich fest, dass die Integrale fast die selben sind. Also kann man ja umstellen und bekommt: [mm] \bruch{\wurzel{\pi}}{2}erf(z)=\integral_{0}^{z}{e^{-r^2} dr} [/mm] oder [mm] \wurzel{\pi}erf(z)=\integral_{-z}^{z}{e^{-r^2} dr}. [/mm] Die Werte für erf(z) liest man aus der Tabelle ab. Für [mm] z\to\infty \Rightarrow [/mm] erf(z)= 1 und man erhält so auch [mm] \wurzel{\pi} [/mm] als Ergebnis.
Wie kann ich das Ergebnis mit der Fehlerfunktion berechnen, wenn ich statt [mm] e^{-x^2} [/mm] so etwas wie [mm] e^{-\bruch{1}{2}*x^2} [/mm] , [mm] e^{x^2} [/mm] oder [mm] e^{(x-x_{0})^2} [/mm] habe?
Bei [mm] \integral_{-\infty}^{\infty}{e^{-(x-x_{0})^2} dx} [/mm] denke ich, bekomme ich etwas wie [mm] erf(x-x_{0}) [/mm] und dann mit [mm] \limes_{x\rightarrow\infty}erf(x-x_{0})=1 [/mm] hätte ich als Ergebnis auch [mm] \wurzel{\pi}. [/mm] Bei [mm] \integral_{-\infty}^{\infty}{e^{-\bruch{1} {2}*x^2} dx} [/mm] müsste das Ergebnis [mm] \wurzel{2\pi} [/mm] sein. Nur wie rechne ich das und wie rechne ich das Ergebnis aus, wenn der Exponent positiv ist?
Wäre nett, wenn mir einer helfen könnte?
Viele Grüße,
volk
[edit]
das Integral mit [mm] e^{x^2} [/mm] wird wohl unendlich sein, weshalb sich die Frage erledigt hat. Habe da wohl einen Moment nicht nachgedacht...
[/edit]
|
|
|
|
Hallo volk,
> [edit]
> das Integral mit [mm]e^{x^2}[/mm] wird wohl unendlich sein, weshalb
> sich die Frage erledigt hat. Habe da wohl einen Moment
> nicht nachgedacht...
> [/edit]
das ist schonmal ne gute Erkenntnis
Der Rest ist aber auch nicht schwer.
Nehmen wir als Beispiel mal:
$ [mm] \integral_{-\infty}^{\infty}{e^{-\bruch{1} {2}\cdot{}x^2} dx} [/mm] $
Umgeformt liefert das:
$ [mm] \integral_{-\infty}^{\infty}{e^{-\left(\bruch{x} {\sqrt{2}}\right)^2} dx} [/mm] $
Substituiere nun $y = [mm] \bruch{x} {\sqrt{2}}$ [/mm] und schau, was passiert
Alternativ bliebe dir auch immer noch die Möglichkeit die "neuen" Integrale analog wie das dir bereits Bekannte mit Hilfe von Polarkoordinaten auszurechnen, das Substitutionsverfahren geht aber schneller.
MFG,
Gono.
|
|
|
|