www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "komplexe Zahlen" - expFunktion in kart.Normalform
expFunktion in kart.Normalform < komplexe Zahlen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

expFunktion in kart.Normalform: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:28 So 28.03.2010
Autor: elkon

Aufgabe
[mm] e^{16*\pi*i} [/mm]

Hallo,

ich sitze hier vo der Aufgabe die ich in kartesische Normalform bringen soll.

Ich weiß das sich die Form aus cos() + i * sin() für Rm(z) und Im(z) zusammensetzt.

In die Klammern bei cos & sin hätte ich jetzt [mm] 16\pi [/mm] eingesetz. Ist das so richtig ? Oder denke ich dort falsch.

Ein weiterer Schrit ist es mit dem Bogenmaß mein Gradmaß auszurechnen.

also [mm] \bruch{GM}{360} [/mm] = [mm] \bruch {16\pi}{2\pi} [/mm]

Hierbei habe ich mal eine generelle Frage, sind Zahlen die größer 360 noch ok im BM ?

Dieses Ergebnis rechne ich dann mit cos und sin aus und erhalte mein Re und Im für die kartesische Normalform oder ?


Viele Dank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
expFunktion in kart.Normalform: Antwort
Status: (Antwort) fertig Status 
Datum: 19:36 So 28.03.2010
Autor: schachuzipus

Hallo Konstantin,



> [mm]e^{16*\pi*i}[/mm]
>  Hallo,
>  
> ich sitze hier vo der Aufgabe die ich in kartesische
> Normalform bringen soll.
>  
> Ich weiß das sich die Form aus cos() + i * sin() für
> Rm(z) und Im(z) zusammensetzt. [ok]
>  
> In die Klammern bei cos & sin hätte ich jetzt [mm]16\pi[/mm]
> eingesetz. Ist das so richtig ? Oder denke ich dort
> falsch.

Nein, alles ok!

>  
> Ein weiterer Schrit ist es mit dem Bogenmaß mein Gradmaß
> auszurechnen.

Wieso willst du das tun?

[mm] $\cos(16\pi)$ [/mm] und [mm] $\sin(16\pi)$ [/mm] sind doch nun wahrlich nicht schwer zu berechnen?!

Das kannst du doch durch Hinsehen lösen.

Du weißt hoffentlich, dass [mm] $\sin,\cos$ $2\pi$-periodisch [/mm] sind ...

>  
> also [mm]\bruch{GM}{360}[/mm] = [mm]\bruch {16\pi}{2\pi}[/mm]
>  
> Hierbei habe ich mal eine generelle Frage, sind Zahlen die
> größer 360 noch ok im BM ?

Es ist doch [mm] $360^{\circ} [/mm] \ [mm] \hat= [/mm] \ [mm] 2\pi$ [/mm]

Also [mm] $180^{\circ} [/mm] \ [mm] \hat= [/mm] \ [mm] \pi$ [/mm]

Damit [mm] $16\pi [/mm] \ [mm] \hat= [/mm] \ [mm] 16\cdot{}180^{\circ}\ldots$ [/mm]

>  
> Dieses Ergebnis rechne ich dann mit cos und sin aus und
> erhalte mein Re und Im für die kartesische Normalform oder
> ?

Ja, mache das mal!

>  
>
> Viele Dank
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]