extrema einer Betragsfunktion < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Bestimmen Sie die lokalen und globalen Extrema der Funktion
[mm]g: [-4,4] [/mm] [mm] \to \IR \wedge[/mm] [mm]x [/mm] [mm] \mapsto f(n)=\begin{cases} 3-(x+3)^2, & \mbox{für } -4 \le x \le -2 \\ 3+(x+1)^3, & \mbox{für } -2 \le x \le 0 \\ |(x-1)(x-3)|, & \mbox{für } 0 \le x \le 4 \end{cases} [/mm] |
Die Extrema der ersten beiden Teilfunktionen habe ich herausbekommen. Dies sind sicher die lokalen Extrema. Nur habe ich Probleme die Extrema der untersten Teilfunktion heraus zu finden. Kann mir jemand sagen, wie ich da vor gehe und wie bestimme ich dann die globalen Extrema. Bleibe ich dabei im Defenitionsbereich von [-4,4] oder geh ich da von [mm] [-\infty, \infty].
[/mm]
Vielen Dank für die Hilfe und Gruß von mir :)
|
|
|
|
Hallo nieselfriem,
Du bleibst nat. im "interessierenden" Definitionsbereich [0,4]. Für die Betragsfunktion mußt Du im Zweifel eine Fallunterscheidung(wann ist (x-1)(x-3) kleiner 0 größer 0) machen.
Die Übergänge von einer Funktion zur nächsten können übrigens auch lokale Extrema sein.
Globale Extremwerte sind die kleinsten/größten Funktionswerte im Definitionsbereich.
Im Übrigen ist f(0) nicht so ganz richtig definiert (entweder 4 oder 3)
viele Grüße
mathemaduenn
|
|
|
|
|
Aufgabe | [mm] g:[-4,4]\to \IR \wedge x\mapsto g(x):=\begin{cases} 3-(x+3)^2, & \mbox{für } -4 \le x \le -2 \\ 3+(x+1)^3, & \mbox{für } -2 < x < 0 \\ |(x-1)(x-3)|, & \mbox{für } 0 \le x \le 4 \end{cases} [/mm] |
Was meinst du damit nicht richtig definiert. Ich habe es nochmal korrigiert. Weiterhin habe ich natürlich noch die frage, wie ich vor gehe, wenn ich so eine Betragsfunktion auf extrema untersuchen soll
Gruß niesel
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:04 Mo 09.01.2006 | Autor: | Stefan |
Hallo!
Zum Teil mit der Betragsfunktion:
Es gilt ja:
[mm] $|(x-1)(x-3)|=|(x-2)^2-1|$.
[/mm]
Eine solche Parabelgleichung kann ihr betragliches Maximum nur am Scheitelpunkt (also für $x=2$) oder an den Rändern (also für $x=0$ und/oder für $x=4$ annehmen)...
Liebe Grüße
Stefan
|
|
|
|