gauss-seidel-verfahren < Lin. Gleich.-systeme < Numerik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | a) Bestimmen Sie die Eigenwerte (zu den Eigenfunktionen [mm] u_{k}(x)=sin(k \pi [/mm] x), k = 1, . . . , n - 1) für
[mm] -u_{h}^{"} [/mm] (x) = f(x) , x [mm] \in [/mm] (0, 1) , u(0) = u(1) = 0 ,
mit der diskreten Ableitung [mm] u_{h}^{"} [/mm] (x) = [mm] \bruch{u (x - h) - 2u (x) + u(x + h)}{h^{2}} [/mm] , h = [mm] \bruch{1}{n}. [/mm] [Ergebnis [mm] \lambda_{k} [/mm] = [mm] \bruch{4}{h^{2}} sin^{2} \bruch{k \pi h }{2}]
[/mm]
b) Berechnen Sie den Spektralradius der Iterationsmatrix [mm] D^{-1} [/mm] (A - D) für das Jacobi-Verfahren (mit der
zu [mm] -u_{h}^{"} [/mm] gehörigen (n - 1)×(n - 1)-Matrix A = [mm] \bruch{1}{h^{2}} [/mm] Tridiag[-1; 2;-1]).
Wie lautet der optimale Relaxationsparameter?
c) Programmieren Sie das Gauss-Seidel-Verfahren für dieses Problem mit f(x) = [mm] exp(x^{2}) [/mm] und dem Start-
vektor [mm] u^{(0)} [/mm] = (0, . . . , 0). Bestimmen Sie in Abhängigkeit von h die Anzahl der Iterationsschritte bis die
Abweichung [mm] \parallel e^{(k)} \parallel_{ \infty} [/mm] zur exakten Lösung kleiner als [mm] 10^{-5} [/mm] ist.
Wie ändert sich die Zahl der Iterationen bei Relaxation mit w = [mm] \bruch{2}{1 + sin \pi h}? [/mm] |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Eigentlich geht es mir nur um Aufgabe c) (restliche Aufgaben nur zur Vollständigkeit)!! Ich habe Probleme mit dieser Aufgabe, da ich keinen Ansatz finde, sie zu lösen. Würde mich riesig freuen, wenn ihr mir helfen könntet!! Danke
|
|
|
|
Hallo prog-start,
Für die Abschätzung kannst Du den Spektralradius der Iterationsmatrix beim Gauss-Seidel-Verfahren verwenden. siehe Banachscher Fixpunktsatz
Falls Du Probleme beim Programmieren hast solltest Du die vielleicht etwas mehr spezifizieren.
viele Grüße
mathemaduenn
|
|
|
|