www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - gebiete
gebiete < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gebiete: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:30 Di 21.04.2009
Autor: Picassine

Aufgabe
Seien G1 und G2 Gebiete mit nicht leerem Schnitt. Entscheide (Beweis der Gegenbeispiel),ob (i) G1UG2 und (ii) G1 geschnitten G2 Gebiete sind.

Ich denke das G1UG2 wieder ein gebiet ist, da der Schnitt nicht ler ist. Wie Beweis ich das?
Was ist mit dem Schnitt von G1 und G2?
Vielen Dank

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
gebiete: Antwort
Status: (Antwort) fertig Status 
Datum: 14:51 Di 21.04.2009
Autor: fred97

Zu [mm] $G_1 \cup G_2$: [/mm]

Klar dürfte sein, dass [mm] $G_1 \cup G_2$ [/mm] offen ist und dass für offene Mengen in [mm] \IC [/mm] Zusammenhang = Wegzusammenhang ist.

Beh.: [mm] $G_1 \cup G_2$ [/mm] ist wegzusammenhängend.

Beweis: Seien $a,b [mm] \in G_1 \cup G_2$ [/mm]

Fall 1: $a,b [mm] \in G_1$ [/mm] . Dann gibt es einen Weg in [mm] G_1 [/mm] , der a mit b verbindet, da [mm] G_1 [/mm] zusammenhängend ist.

Fall 2: $a,b [mm] \in G_2$ [/mm] . Dann gibt es einen Weg in [mm] G_2 [/mm] , der a mit b verbindet, da [mm] G_2 [/mm] zusammenhängend ist.

Fall 3: $a [mm] \in G_1, [/mm] b [mm] \in G_2$. [/mm] Da [mm] G_1 [/mm] und [mm] G_2 [/mm] einen nichtleeren Schnitt haben gibt es ein $c [mm] \in G_1 \cap G_2$. [/mm] Nun verbinde a und c durch einen Weg in [mm] G_1 [/mm] und vebinde c und b durch einen Weg in [mm] G_2. [/mm] Damit hast Du a und b in [mm] G_1 \cup G_2 [/mm] miteinander verbunden.


Zu [mm] $G_1 \cap G_2$: [/mm]


Wähle [mm] G_1 [/mm] und [mm] G_2 [/mm] als Ringgebiete, also etwa

             [mm] G_1 [/mm] = { z: [mm] r_1<|z|
Wenn Du [mm] r_1,R_1, r_2, R_2 [/mm] und [mm] z_0 [/mm] geeignet wählst, siehst Du, dass [mm] $G_1 \cap G_2$ [/mm] nicht zusammenhängend ist



FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]