gleichmäßige stetigkeit < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 06:51 Fr 28.12.2007 | Autor: | esiminch |
Aufgabe | Untersuchen Sie, ob die folgenden Funktionen stetig oder sogar gleihmaessig stetig sind:
[mm] f:[0;\infty) \rightarrow [/mm] R
(a) f(x) := [mm] x^2
[/mm]
(b) f(x) := [mm] \wurzel{x}
[/mm]
|
meine frage eher algemien als zu a oder b, hat mit dem grundsaetzlichem vorgehen zu tun bei glm. stetigkeits beweisen, bzw. mit meinem verstaendniss dieser ich werde aber zunaechst einmal zu (a) fragen:
sei:
[mm] \delta [/mm] := [mm] min\{1, \frac{\epsilon}{2|x_0| + 1}\}
[/mm]
dann:
[mm] |x-x_0| [/mm] < 1 [mm] \Rightarrow [/mm] |f(x) - [mm] f(x_0)| [/mm] = [mm] |x^2 [/mm] - [mm] x_0^2| [/mm] = [mm] |x-x_0||x-x_0 [/mm] + [mm] 2x_0| \le |x-x_0|(2|x_0| [/mm] + 1) < [mm] \epsilon
[/mm]
nun, ist in meinem beweis ja [mm] \delta [/mm] von [mm] \epsilon [/mm] und [mm] x_0 [/mm] abhaengig, also gilt dieser beweis nur fuer die einfache stetigkeit.
frage:
*) kann man von dem aufgefuehrtem Beweis auf die glm. stetigkeit schliessen mit dem argument das [mm] x_0, [/mm] naja kein bestimtes [mm] x_0 [/mm] ist
**) kann man auch stat [mm] min\{1, \frac{\epsilon}{2|x_0| + 1}\} [/mm] einfach 1 fuer [mm] \delta [/mm] waehlen? uebersehe ich da was?
***) wenn [mm] \delta [/mm] := 1 waehre es nicht der Beweis?
****) frohe weinachten, frohe feiertage danke euch allen!
|
|
|
|
> Untersuchen Sie, ob die folgenden Funktionen stetig oder
> sogar gleihmaessig stetig sind:
> [mm]f:[0;\infty) \rightarrow[/mm] R
>
> (a) f(x) := [mm]x^2[/mm]
>
> (b) f(x) := [mm]\wurzel{x}[/mm]
>
> meine frage eher algemien als zu a oder b, hat mit dem
> grundsaetzlichem vorgehen zu tun bei glm. stetigkeits
> beweisen, bzw. mit meinem verstaendniss dieser ich werde
> aber zunaechst einmal zu (a) fragen:
>
> sei:
>
> [mm]\delta[/mm] := [mm]min\{1, \frac{\epsilon}{2|x_0| + 1}\}[/mm]
>
> dann:
>
> [mm]|x-x_0|[/mm] < 1 [mm]\Rightarrow[/mm] |f(x) - [mm]f(x_0)|[/mm] = [mm]|x^2[/mm] - [mm]x_0^2|[/mm] =
> [mm]|x-x_0||x-x_0[/mm] + [mm]2x_0| \le |x-x_0|(2|x_0|[/mm] + 1) < [mm]\epsilon[/mm]
>
> nun, ist in meinem beweis ja [mm]\delta[/mm] von [mm]\epsilon[/mm] und [mm]x_0[/mm]
> abhaengig, also gilt dieser beweis nur fuer die einfache
> stetigkeit.
ja.
>
> frage:
>
> *) kann man von dem aufgefuehrtem Beweis auf die glm.
> stetigkeit schliessen mit dem argument das [mm]x_0,[/mm] naja kein
> bestimtes [mm]x_0[/mm] ist
Nein: wie Du selbst bemerkst, ist Dein [mm] $\delta$ [/mm] von der Wahl von [mm] $x_0$ [/mm] abhängig. Gleichmässige Stetigkeit einer Funktion $f$ ist aber so definiert: "für alle [mm] $\epsilon>0$ [/mm] gibt es ein [mm] $\delta [/mm] >0$, so dass für alle [mm] $x_0,x\in D_f$ [/mm] aus [mm] $|x-x_0|<\delta$ [/mm] folgt, dass [mm] $|f(x)-f(x_0)|<\delta$".
[/mm]
Um also die Behauptung der gleichmässigen Stetigkeit von $f$ gegen mich (ungläubigen Thomas) verteidigen zu können, müsstest Du für jedes noch so kleine, von mir gewählte [mm] $\varepsilon>0$ [/mm] ein [mm] $\delta [/mm] >0$ angeben können, so dass Du für jede meiner nachfolgenden möglichen Wahlen von [mm] $x,x_0\in D_f$ [/mm] mit [mm] $|x-x_0|<\delta$ [/mm] beweisen könntest, dass [mm] $|f(x)-f(x_0)|<\varepsilon$ [/mm] gilt.
>
> **) kann man auch stat [mm]min\{1, \frac{\epsilon}{2|x_0| + 1}\}[/mm]
> einfach 1 fuer [mm]\delta[/mm] waehlen? uebersehe ich da was?
Aber ja doch. Jedenfalls geht Dein Beweis dann nicht durch. Insbesondere kann ja ohne weiteres, für genügend grosses [mm] $x_0$, [/mm] gelten, dass [mm] $1>\frac{\varepsilon}{2|x_0|+1}$, [/mm] d.h. das [mm] $\delta$, [/mm] das Du für Deinen obigen Beweis benötigst, müssten dann $<1$ sein.
>
> ***) wenn [mm]\delta[/mm] := 1 waehre es nicht der Beweis?
Nein, siehe oben.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:38 Sa 29.12.2007 | Autor: | esiminch |
Danke Somebody (oder Thomas der ungleubige:) habe inzwischen mich intensiver mit den definitionen beschaeftigt und gelang auch zum gleichen schluss, danke aber dass du meine schlussfolgerungen bestaetigt hast.
also suche ich weiter ob es in diesem fall eine glm. stetigkeit vorhanden ist, bzw nicht vorhanden ist. (naja der graph sieht schon so aus das die steigung sich besonders am anfang stark aendert also wenn es ein besonders kleines [mm] \delta [/mm] gebe fuer besonders grosse [mm] x_0 [/mm] dann wuerde es ja fuer alle [mm] x_0 [/mm] gelten, aber so sicher bin ich auch nicht ob es tatsaechlich gibt).
|
|
|
|