homogene Differentialgleichung < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 19:41 Do 17.11.2005 | Autor: | sole |
Hi!
Ich soll die Differentialgleichung y'=Ay lösen, wobei
A= [mm] \pmat{ 1 & -3 & 1 & 0 \\ 2 & -4 & 1 & -1 \\ 0 & 0 & -1 & -2 \\ -2 & 3 & -1 & 0 }
[/mm]
Das charakteristische Polynom von A ist nach meinen Rechnungen gleich [mm] (X+1)^{4}, [/mm] der Eigenraum zum Eigenwert -1 gleich
< [mm] \vektor{0 \\ 1 \\ 3 \\ 0},\vektor{-1 \\ 0 \\ 2 \\ 0},\vektor{3 \\ 2 \\ 0 \\ 0}>.
[/mm]
Ich weiss das wenn ich einen dieser Eigenvektoren mit [mm] e^{-t} [/mm] multipliziere dies eine Lösung der Differentialgleichung ist (und Linearkombinationen dieser Lösungen auch). Die Frage ist jetzt: falls die Eigenvektoren eine Basis von [mm] \IC^{n} [/mm] bilden habe ich ein Lösungsfundamentalsystem gefunden, aber wie ist das in diesem Fall? Gibt es eine weitere Lösung? Wie finde ich die?
Vielen dank, ~sole
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:45 Do 17.11.2005 | Autor: | sole |
edit: sorry falsche Mitteilung
|
|
|
|
|
Hallo Sole,
da die Antwort überfällig ist, ich aber (leider!) keine Zeit habe, sie selber nachzurechnen, nur ein paar Gedanken zu Deinem Posting:
Wenn Du richtig gerechnet hast, gibt es nur einen Eigenwert -1, das ändert sich auch in [mm] \IC [/mm] nicht.
Dein Eigenraum ist nur zweidimensional (die angegeben 3 "Basisvektoren" sind linear abhängig) wenn Du die DGL mit einer Orthogonal-Trafo zu entkoppeln versuchst, entstehen Komponenten-DGL's mir jeweils zwei Variablen (Stichwort: Jordan-Form).
Die müsste man sich anschaun, ob einem dazu was einfällt...
Picard-Lindelöf für eine Näherungslöung geht jedenfalls immer.
Soviel nur, auf die Schnelle,
Richard
|
|
|
|