hypothesen testen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | die seiten eines regulären tetraeders sind mit 0,0,0 und 1 beschriftet. es wird vermutet, dass das tetraeder gezinkt ist. im folgenden wird mit p die wahrscheinlichkeit für das auftreten der zahl 1 beim werfen des tetraders bezeichnet.
a) formulieren sie die aussagen [mm] A_1: [/mm] das tetraeder ist nicht gezinkt
[mm] A_2: [/mm] die trefferwahrscheinlichkeit für die 1 ist gegenüber einem laplace-tetraeder um 5 prozentpunkte erhöht.
[mm] A_3: [/mm] die trefferwahrscheinlichkeit für die 1 ist gegenüber einem laplace-tetraeder um 20 % erhöht.
[mm] A_4: [/mm] das tetraeder ist gezinkt. als hypothesen [mm] H_1, H_2, [/mm] ...
b) das tetraeder wird 150 mal geworfen. [mm] H_1 [/mm] wird angenommen, wenn dabei weniger als 40 mal die 1 erscheint, ansonsten wird [mm] H_2 [/mm] angenommen. bestimmen sie die beiden fehlerwahrscheinlichkeiten und kommentieren sie das ergebnis.
c) wie müsste die entscheidungsregel geändert werden, wenn der fehler erster art mit höchstens 10 % wahrscheinlichkeit auftreten soll, und wie groß ist in diesem fall die zweite irrtumswahrscheinlichkeit? |
zu a) lösungen müsste sein:
[mm] H_1: [/mm] p=0,25
[mm] H_2: [/mm] p= 0,5
[mm] H_3: [/mm] p [mm] \ge [/mm] 0,3
[mm] H_4:p \not= [/mm] 0,25
[mm] H_1 [/mm] und [mm] H_4 [/mm] versteh ich ja noch, aber wie kommt man denn auf die andern beiden? ich hätt für [mm] H_2:P= [/mm] 0,3 und für [mm] H_3:p= [/mm] 0,45 rausbekommen..
zu b) bei meiner rechnung kommt irgendwas raus, was nicht mehr im tafelwerk steht, also 0 % ....
lösung müsste aber sein: 35,3% und 16,4%
zu c) lösung müsste sein [0;44] [45;100]
ich versteh das einfach nicht...
wär nett, wenn ihr mir helfen könntet!!
danke:)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:37 So 27.01.2008 | Autor: | Maggons |
Huhu
Bei der a) bin ich leider auch ein wenig ratlos wie man auf solche Ergebnisse kommen soll; ich sehe spontan nicht den "Kniff" an der Sache und hätte mich eigentlich deinen Ergebnissen angeschlossen aber naja.
Hier hast du wahrscheinlich dann die Normalverteilung oder auch eine Bernoullikette verwendet; beides wäre möglich.
Den Weg über die Bernoulli- Kette wählend, erhalte ich für [mm] P_{H{0}}(H{1}) [/mm] eine Wkt. von 34,81%. Die Abweichung mit deinem Ergebniss erkläre ich mir damit, dass bei der Musterlösung die Normalverteilung verwendet wurde; geht ja auch, da die Laplache Bedingung [mm] \sigma^{2}>9 [/mm] erfüllt ist.
Bei Aufgabe c) muss ma es so aufstellen:
[mm] P_{H{0}}(H{1}) [/mm] = [mm] P^{150} _{\bruch{1}{4}}(X\geK)\le10 [/mm] %
Ein bisschen doof, dass ich nun immer einfach mit meinem CAS- Rechner Werte einsetze; spontan eine algebraische Lösung mit Bernoulli- Formel fiele mir nicht ein.
Aber wenn du in der Normalverteilung die Grenzen 150 und K einsetzt, kannst du das ganze [mm] \le [/mm] 10 % setzen und nach K auflösen.
Lg
|
|
|
|