injektiv, surjektiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:52 So 08.11.2009 | Autor: | azrael1 |
Aufgabe | Wir betrachten die Mengen N={0,1,2,3,...} und M= [mm] {1,\bruch{1}{3},\bruch{1}{9},\bruch{1}{27},\bruch{1}{81},...}.
[/mm]
Geben Sie jeweils eine Abbildung von N nach M an, die
a) injektiv, aber nicht surjektiv,
b) surjektiv, aber nicht injektiv,
c) bijektiv
ist. Geben Sie zu der Abbildung c) die Umkehrfunktion an. |
Hallo,
habe bei c) [mm] f(a)=\bruch{1}{3^{a}} [/mm] und demenstsprechend die Umkehrfunktion [mm] 3^{a}. [/mm] Stimmt das soweit?
a) und b) bekomme ich einfach nicht hin. Die Mengen sind ja eigentlich gleichmaechtig, was fuer mich widerspruechlich klingt. Oder waere bei a) etwas in der Art [mm] f(a)=\bruch{1}{3}*a [/mm] richtig? Brauche bitte eine Loesung.
Schonmal danke fuer eure Zeit.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:02 So 08.11.2009 | Autor: | Teufel |
Hi!
Genau, bei c) kann man einfach $f: N [mm] \to [/mm] M, a [mm] \mapsto \bruch{1}{3^a}$ [/mm] angeben. Also [mm] y=\bruch{1}{3^x}. [/mm] Aber für die Umkehrfunktion musst du das ordentlich nach x umstellen!
[mm] y=\bruch{1}{3^x}
[/mm]
[mm] 3^x=\bruch{1}{y}
[/mm]
(Logarithmus usw.)
Aber da du in c) schon eine bijektive Funktion gefunden hast, kannst du sie "unsurjektiv" machen, indem du dafür sorgst, dass z.B. die 1 in M nicht getroffen wird.
Beispielsweise wäre $f: N [mm] \to [/mm] M, a [mm] \mapsto \bruch{1}{3^{a+1}}$ [/mm] so eine Funktion. Ist die gleiche wie in c) (also schon mal injektiv) aber trifft die 1 in M nicht, weswegen sie nicht surjektiv ist.
Und bei b) musst du dafür sorgen, dass alle Werte getroffen werden, aber mindestens ein Wert mindestens 2 mal vorkommt. Vielleicht kannst du da auch etwas rumtricksen.
Teufel
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:54 So 08.11.2009 | Autor: | azrael1 |
Ok, aber warum ist denn [mm] f(a)=\bruch{1}{3^{a}+1} [/mm] eine injektive Abbildung? Es gibt doch kein einziges sich entsprechendes Paar, da [mm] f(0)=\bruch{1}{2} [/mm] waere und [mm] f(1)=\bruch{1}{4} [/mm] usw...
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:23 So 08.11.2009 | Autor: | Teufel |
Hi!
Es steht ja nicht $ [mm] f(a)=\bruch{1}{3^{a}+1} [/mm] $ da, sondern [mm] f(a)=\bruch{1}{3^{a+1}}!
[/mm]
Also die +1 im Exponenten.
Dann ist [mm] f(0)=\bruch{1}{3}, f(1)=\bruch{1}{9}, [/mm] ...
Teufel
|
|
|
|