www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - integrieren nach zeit
integrieren nach zeit < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integrieren nach zeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:25 Fr 05.11.2010
Autor: hamma

Hallo, durch den energiesatz habe ich die geschwindigkeit eines massepunktes berechnet, die funktion lautet:

[mm] v(x)=\wurzel{2gxcos(\alpha)} [/mm]

Jetzt möchte ich die Zeit berechnen, die der massepunkt zum durchlaufen der strecke x=0 und x=1 benötig.

[mm] \integral_{0}^{x}{\wurzel{2gxcos(\alpha)}} [/mm] = [mm] \wurzel{2g}\integral_{0}^{x}{\wurzel{xcos(\alpha)}} [/mm]

mir fehlt jetzt aber der ansatz wie ich weiter integrieren soll. wäre meine integration soweit richtig?

gruß hamma



        
Bezug
integrieren nach zeit: Unklarheit
Status: (Antwort) fertig Status 
Datum: 13:35 Fr 05.11.2010
Autor: Al-Chwarizmi


> Hallo, durch den energiesatz habe ich die geschwindigkeit
> eines massepunktes berechnet, die funktion lautet:
>  
> [mm]v(x)=\wurzel{2gxcos(\alpha)}[/mm]
>  
> Jetzt möchte ich die Zeit berechnen, die der massepunkt
> zum durchlaufen der strecke x=0 und x=1 benötig.
>  
> [mm]\integral_{0}^{x}{\wurzel{2gxcos(\alpha)}}[/mm] =
> [mm]\wurzel{2g}\integral_{0}^{x}{\wurzel{xcos(\alpha)}}[/mm]
>
> mir fehlt jetzt aber der ansatz wie ich weiter integrieren
> soll. wäre meine integration soweit richtig?
>  
> gruß hamma


Hallo hamma,

da ist mir jetzt zunächst nicht alles so klar. Im Titel
schreibst du "integrieren nach Zeit" (in einem solchen
physikalischen Zusammenhang würde man normaler-
weise die Zeit mit t bezeichnen), aber dann sagst du:

> Jetzt möchte ich die Zeit berechnen, die der massepunkt
> zum durchlaufen der strecke x=0 und x=1 benötig.

Steht jetzt dein x für die Zeit oder tatsächlich für
eine Ortskoordinate ?

LG


Bezug
                
Bezug
integrieren nach zeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:51 Fr 05.11.2010
Autor: hamma

merci für die antwort, ich möchte die Zeit t berechenen , die der Massepunkt benötigt  zum durchlaufen der Sterecke 0-1. Die Strecke x ist die Laufkoordinate also von x=0 bis x=1. Wie integriert man diese Funktion um dann die gefragte Zeit zu erhalten? Die länge der Strecke x ist x= [mm] \bruch{h}{cos\alpha} [/mm]
müsste ich dann folgendermaßen integrieren:

[mm] \integral_{0}^{t}{\wurzel{2gxcos(\alpha)}} [/mm] = [mm] \wurzel{2g}\integral_{0}^{t}{\wurzel{xcos(\alpha)}} [/mm]

Wäre meine Überlegung soweit richtig? mir fehlt aber der Ansatz um weiter zu integrieren.


gruß hamma

Bezug
                        
Bezug
integrieren nach zeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 Fr 05.11.2010
Autor: Al-Chwarizmi


> merci für die antwort, ich möchte die Zeit t berechenen ,
> die der Massepunkt benötigt  zum durchlaufen der Sterecke
> 0-1. Die Strecke x ist die Laufkoordinate also von x=0 bis
> x=1. Wie integriert man diese Funktion um dann die gefragte
> Zeit zu erhalten? Die Länge der Strecke x ist x= [mm]\bruch{h}{cos\alpha}[/mm]

  .... was soll dieses $h$ bedeuten ?

>  müsste ich dann folgendermaßen integrieren:
>  
> [mm]\integral_{0}^{t}{\wurzel{2gxcos(\alpha)}}\ =\ \wurzel{2g}\integral_{0}^{t}{\wurzel{xcos(\alpha)}}[/mm]
>
> Wäre meine Überlegung soweit richtig? mir fehlt aber der
> Ansatz um weiter zu integrieren.

   (so weit hast du überhaupt nichts integriert ...
    ... und welches sollte denn die Integrationsvariable sein ?)
  

> gruß hamma


Hi hamma,

leider ist mir die Situation noch immer nicht ganz klar.
Am besten würdest du noch angeben, aus welchem
physikalischen Zusammenhang denn die Frage stammt,
damit man die Entstehung der Formel

      $ [mm] v(x)=\wurzel{2*g*x*cos(\alpha)} [/mm] $

nachvollziehen kann.

Einmal angenommen, dass da eine Bewegung eines
Massenpunktes in x-Richtung beschrieben wird und
v die Geschwindigkeit dieser Bewegung bezeichnet,
welche gemäß der obigen Formel von der aktuellen
x-Koordinate abhängig ist, so könnten wir das Ganze
z.B. so beschreiben:

Gesucht ist eine Funktion  $x: [mm] t\mapsto [/mm] x(t)$
mit der Ableitung   [mm] $\frac{d x(t)}{dt}\ [/mm] =\ [mm] \dot{x}(t)$ [/mm]   (Geschwindigkeit)
und
         [mm] $\dot{x}(t)\ [/mm] =\ [mm] \sqrt{2*g*cos(\alpha)*x(t)}\ [/mm] =\ [mm] f*\sqrt{x(t)}$ [/mm]

(konstanter Faktor  $\ f\ =\ [mm] \sqrt{2*g*cos(\alpha)}$ [/mm] )

Damit hätte man eine Differentialgleichung, die durch
Separation der Variablen leicht zu lösen ist.


LG      Al-Chwarizmi
        
  

Bezug
                                
Bezug
integrieren nach zeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:58 Sa 06.11.2010
Autor: hamma

ok, danke für die antwort.
gruß hamma

Bezug
                                        
Bezug
integrieren nach zeit: physikalischer Hintergrund ?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:55 Sa 06.11.2010
Autor: Al-Chwarizmi


> ok, danke für die antwort.
>  gruß hamma

Gut.  Es hätte mich nun aber doch noch interessiert, was
genau die dahinter steckende physikalische Aufgabe war,
von der die angegebene Gleichung stammt. Wofür stehen
insbesondere die Variablen h und [mm] \alpha [/mm] ? g ist ja vermutlich
die Gravitationskonstante.
Zur Lösung: ich habe für die Zeitdauer 0.5 Zeiteinheiten
bekommen ...

LG    Al-Chw.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]