www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Axiomatische Mengenlehre" - kartesisches Produkt
kartesisches Produkt < axiomatisch < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kartesisches Produkt: Schnitt, Vereinigung
Status: (Frage) beantwortet Status 
Datum: 11:10 Di 08.10.2013
Autor: merzi

Aufgabe
Seien A, B, C, D Mengen.
Zeigen Sie, dass
(A [mm] \times [/mm] B) [mm] \cap [/mm] (C [mm] \times [/mm] D) = (A [mm] \cap [/mm] C) [mm] \times [/mm] (B [mm] \cap [/mm] D)
gilt

Ich hab jetzt den Ansatz getroffen:
a [mm] \in [/mm] A [mm] \wedge [/mm] b [mm] \in [/mm] B [mm] \wedge [/mm] c [mm] \in [/mm] C [mm] \wedge [/mm] d [mm] \in [/mm] D

(a [mm] \in [/mm] A [mm] \wedge [/mm] c [mm] \in [/mm] C) [mm] \wedge [/mm] (b [mm] \in [/mm] B [mm] \wedge [/mm] d [mm] \in [/mm] D)

(A  [mm] \cap [/mm] C) [mm] \times [/mm] (B [mm] \cap [/mm] D)


Stimmt das so?
Wie beweise ich das von der anderen Seite?

Gruß

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
kartesisches Produkt: Antwort
Status: (Antwort) fertig Status 
Datum: 12:16 Di 08.10.2013
Autor: tobit09

Hallo merzi und herzlich [willkommenmr]!


> Seien A, B, C, D Mengen.
>  Zeigen Sie, dass
>  (A [mm]\times[/mm] B) [mm]\cap[/mm] (C [mm]\times[/mm] D) = (A [mm]\cap[/mm] C) [mm]\times[/mm] (B [mm]\cap[/mm]
> D)
>  gilt

>  Ich hab jetzt den Ansatz getroffen:
>  a [mm]\in[/mm] A [mm]\wedge[/mm] b [mm]\in[/mm] B [mm]\wedge[/mm] c [mm]\in[/mm] C [mm]\wedge[/mm] d [mm]\in[/mm] D
>  
> (a [mm]\in[/mm] A [mm]\wedge[/mm] c [mm]\in[/mm] C) [mm]\wedge[/mm] (b [mm]\in[/mm] B [mm]\wedge[/mm] d [mm]\in[/mm] D)
>  
> (A  [mm]\cap[/mm] C) [mm]\times[/mm] (B [mm]\cap[/mm] D)

Ich kann dir leider nicht folgen. Du betrachtest insgesamt vier Elemente der Mengen A, B, C und D? Dann steht in der dritten Zeile plötzlich eine Menge, ohne dass du uns verrätst, was mit dieser Menge sein soll. Es fehlt jede Erläuterung, was du glaubst, getan zu haben.


Vorüberlegung: Was bedeutet eigentlich z.B. [mm] $(A\cap C)\times(B\cap [/mm] D)$? Wie ist dieses kartesische Produkt definiert?


Standardmethode, um die Gleichheit zweier Mengen $M$ und $N$ zu zeigen: Zeige nacheinander [mm] $M\subseteq [/mm] N$ und [mm] $M\supseteq [/mm] N$.


Fangen wir also mal mit dem Nachweis von [mm] $(A\times B)\cap(C\times D)\subseteq (A\cap C)\times(B\cap [/mm] D)$ an:

Zu zeigen ist also nach der Definition von "Teilmenge", dass für alle [mm] $x\in(A\times B)\cap (C\times [/mm] D)$ auch [mm] $x\in(A\cap C)\times(B\cap [/mm] D)$ gilt.

Sei also [mm] $x\in(A\times B)\cap(C\times [/mm] D)$. Zu zeigen ist [mm] $x\in(A\cap C)\times (B\cap [/mm] D)$.

Was bedeutet [mm] $x\in(A\times B)\cap (C\times [/mm] D)$? Nach Definition von [mm] $\cap$ [/mm] gerade [mm] $x\in A\times [/mm] B$ und [mm] $x\in C\times [/mm] D$.

Was bedeutet wiederum [mm] $x\in A\times [/mm] B$? Es bedeutet nach Definition des kartesischen Produktes, dass $x=(a,b)$ für ein [mm] $a\in [/mm] A$ und ein [mm] $b\in [/mm] B$ gilt.

Analog bedeutet [mm] $x\in C\times [/mm] D$, dass $x=(c,d)$ für ein [mm] $c\in [/mm] C$ und ein [mm] $d\in [/mm] D$ gilt.

Also $(a,b)=x=(c,d)$. Es folgt $a=c$ und $b=d$. Also gilt auch [mm] $a\in [/mm] C$ und [mm] $b\in [/mm] D$.

Somit folgt [mm] $a\in A\cap [/mm] C$ und [mm] $b\in B\cap [/mm] D$. Also gilt [mm] $x=(a,b)\in(A\cap C)\times(B\cap [/mm] D)$. Genau das war zu zeigen.


Ist dir dieser Beweis von [mm] $(A\times B)\cap(C\times D)\subseteq (A\cap C)\times(B\cap [/mm] D)$ klar? Ansonsten bitte unbedingt nachfragen!

Versuche du dann mal den Beweis von [mm] $(A\times B)\cap(C\times D)\supseteq (A\cap C)\times(B\cap [/mm] D)$.


Viele Grüße
Tobias

Bezug
                
Bezug
kartesisches Produkt: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 13:02 Di 08.10.2013
Autor: merzi

Ich verstehe es fast, nur den letzten Schritt habe ich noch nicht verstanden.

> Somit folgt [mm]a\in A\cap C[/mm] und [mm]b\in B\cap D[/mm]. Also gilt
> [mm]x=(a,b)\in(A\cap C)\times(B\cap D)[/mm]. Genau das war zu
> zeigen.

Wie komme ich schlussendlich auf [mm]x=(a,b)\in(A\cap C)\times(B\cap D)[/mm]? Aus welchem Grund das [mm] \times [/mm] zwischen [mm](A\cap C)[/mm] und [mm](B\cap D)[/mm]?


Danke für die Hilfe!

Gruß
Mathias

Bezug
                        
Bezug
kartesisches Produkt: Antwort
Status: (Antwort) fertig Status 
Datum: 13:11 Di 08.10.2013
Autor: tobit09


> > Somit folgt [mm]a\in A\cap C[/mm] und [mm]b\in B\cap D[/mm]. Also gilt
> > [mm]x=(a,b)\in(A\cap C)\times(B\cap D)[/mm]. Genau das war zu
> > zeigen.
>  
> Wie komme ich schlussendlich auf [mm]x=(a,b)\in(A\cap C)\times(B\cap D)[/mm]?
> Aus welchem Grund das [mm]\times[/mm] zwischen [mm](A\cap C)[/mm] und [mm](B\cap D)[/mm]?

Was bedeutet denn [mm] $(A\cap C)\times(B\cap [/mm] D)$?
Nach Definition des kartesischen Produktes gilt

     [mm] $(A\cap C)\times(B\cap D)=\{(s,t)\;|\;s\in A\cap C,\;t\in B\cap D\}$. [/mm]

[mm] $(A\cap C)\times(B\cap [/mm] D)$ ist also die Menge aller Paare, deren erste Komponente Element von [mm] $A\cap [/mm] C$ und deren zweite Komponente ein Element von [mm] $B\cap [/mm] D$ ist.

Nun haben wir überlegt, dass [mm] $a\in A\cap [/mm] C$ und [mm] $b\in B\cap [/mm] D$ gilt. Also ist $(a,b)$ so ein Paar, dessen erste Komponente Element von [mm] $A\cap [/mm] C$ und dessen zweite Komponente ein Element von [mm] $B\cap [/mm] D$ ist. Also gilt tatsächlich [mm] $(a,b)\in(A\cap C)\times(B\cap [/mm] D)$.

Bezug
                                
Bezug
kartesisches Produkt: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:08 Di 08.10.2013
Autor: merzi

Sehr gut. Danke!

Habe es nun auch in die andere Richtung bewiesen.

Bezug
                                        
Bezug
kartesisches Produkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:21 Di 08.10.2013
Autor: tobit09


> Habe es nun auch in die andere Richtung bewiesen.

Schön! Magst du uns deinen Beweis präsentieren?

Bezug
                                                
Bezug
kartesisches Produkt: Beweis
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:04 Di 08.10.2013
Autor: merzi

Kartesisches Produkt ist definiert durch [mm](A\times B):=\{(a,b)/a\in A\wedge b\in B\}[/mm]

[mm](A\cap C)\times (B\cap D)[/mm]

[mm]x\in (A\cap C)\wedge y\in (B\cap D)[/mm]

[mm]x\in A\wedge x\in C\wedge y\in B\wedge y\in D[/mm]

Ein bisschen anders anordnen:

[mm]x\in A\wedge y\in B\wedge x\in C\wedge y\in D[/mm]

Daraus folgt:

[mm](A\times B)\cap (C\times D)[/mm]

Bezug
                                                        
Bezug
kartesisches Produkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:22 Di 08.10.2013
Autor: tobit09

Freut mich, dass du deine Lösung gepostet hast! :-)


> Kartesisches Produkt ist definiert durch [mm](A\times B):=\{(a,b)/a\in A\wedge b\in B\}[/mm]
>

Sei [mm] $\red{(x,y)\in}$ [/mm]

> [mm](A\cap C)\times (B\cap D)[/mm]
>  

Dann folgt

> [mm]x\in (A\cap C)\wedge y\in (B\cap D)[/mm]

und somit

> [mm]x\in A\wedge x\in C\wedge y\in B\wedge y\in D[/mm]
>  
> Ein bisschen anders anordnen:
>  
> [mm]x\in A\wedge y\in B\wedge x\in C\wedge y\in D[/mm]
>  
> Daraus folgt:
>  

[mm] $\red{(x,y)\in}$ [/mm]

> [mm](A\times B)\cap (C\times D)[/mm]

Mit den kleinen Ergänzungen von mir stimmt der Beweis!

Beachte insbesondere die rot markierten Ergänzungen. (Einfach eine Menge hinzuschreiben, ohne zu verraten, was mit ihr sein soll, ist nämlich sinnlos.)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]