kniffelige Integrale < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:48 So 20.04.2008 | Autor: | Pedda |
Aufgabe | Finde die Stammfunktion der Integrale
[mm] \bruch{\wurzel(x+1)}{\wurzel(x-1)} [/mm]
[mm] \bruch{1}{x*\wurzel{a^2+x^2} [/mm] |
Hallo,
ich soll die oben angegebenen Integrale lösen. Ich probiere schon die ganze Zeit geeignete Substitutionen zu finden, aber verrenne mich immer wieder. Bei dem ersten Integral habe ich es auch mal mit Erweitern versucht, bin aber nicht auf sinnvolle Ergebnisse gekommen. Bei dem zweiten suche ich nach einem Hinweis auf arsinh, finde aber noch nicht den richtigen Ansatzpunkt. Wäre euch sehr dankbar, wenn ihr mir helfen könntet!
tschö, Peter
|
|
|
|
Hallo Pedda,
> Finde die Stammfunktion der Integrale
>
> [mm]\bruch{\wurzel(x+1)}{\wurzel(x-1)}[/mm]
> [mm]\bruch{1}{x*\wurzel{a^2+x^2}[/mm]
> Hallo,
>
> ich soll die oben angegebenen Integrale lösen. Ich probiere
> schon die ganze Zeit geeignete Substitutionen zu finden,
> aber verrenne mich immer wieder. Bei dem ersten Integral
> habe ich es auch mal mit Erweitern versucht, bin aber nicht
> auf sinnvolle Ergebnisse gekommen. Bei dem zweiten suche
> ich nach einem Hinweis auf arsinh, finde aber noch nicht
> den richtigen Ansatzpunkt. Wäre euch sehr dankbar, wenn ihr
> mir helfen könntet!
Beim ersten Integral wende die Substitution [mm]x=z^{2}-1[/mm] an.
Forme das zweite Integral geeignet um.
>
> tschö, Peter
Gruß
MathePower
|
|
|
|
|
So klappt das auch:
[mm] \bruch{\wurzel{x+1}}{\wurzel{x-1}}=\sqrt{\frac{x+1}{x-1}} [/mm]
Substituiere mal [mm] z=\sqrt{\frac{x+1}{x-1}}.
[/mm]
Bilde die erste Ableitung davon, löse nach dx auf und ersetze bei deinem Integral dann das dx durch das Ergebnis. Bevor du jetzt den Bruchterm aber mit z ersetzt, vereinfach das ganze erstmal und du erhälst [mm] \integral{-x^2+1dz}. [/mm] Löse dann [mm] z=\sqrt{\frac{x+1}{x-1}} [/mm] nach x auf und ersetze das x. Du erhälst eine gebrochen rationale Funktion, deren Nenner nur reele Nullstellen hast, du kannst Partialbruchzerlegung anwenden.
Das zweite klappt mit [mm] z=tan^{-1}(\frac{x}{a}). [/mm] Wie oben erstmal das dx ersetzen, vereinfachen und dann x ersetzen. Man erhälst das einfache Integral [mm] a^{-1}\integral{\frac{1}{sin(z)}dz}=a^{-1}\integral{csc(x)dx} [/mm] erhalten, wenn du alles richtig gemacht hast. Dann das lösen, rücksubstituieren, fertig.
|
|
|
|