www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - konvexes Polytop
konvexes Polytop < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvexes Polytop: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:42 Mo 20.04.2009
Autor: schneehasi6

Aufgabe
Sei [mm] T\subset \IR^{4} [/mm] das konvexe Polytop
T:= [mm] \{(x_{1},x_{2},x_{3},x_{4}) \in \IR^{4} : -1 \le x_{i} \quad \text{für} \quad i = 1,...,4\}. [/mm]
T heisst Tesserakt. Das duale Polytop [mm] \{\gamma \in (\IR^{4})^\* : \gamma(v) \le 1\quad \text{für alle} \quad v \in T\} [/mm] werde mit D bezeichnet. Bestimmen Sie eine minimale Menge von linearen Ungleichungen, die D definieren.
Hinweis: Für die Minimalität genügt es, für jede Umgebung einen Punkt in [mm] \IR^4 [/mm] zu finden, der alle übrigen Ungleichungen echt erfüllt (d.h. mit "<" anstatt [mm] "\le"), [/mm] die ursprüngliche aber mit Gleichheit.

Was ein konvexes Polytop ist habe ich mehr oder weniger verstanden. ich verstehe aber nicht, wie ich auf diese minimale Anzahl an Ungleichungen kommen soll..

        
Bezug
konvexes Polytop: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 Mo 27.04.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]