www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - kugel-kugel
kugel-kugel < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kugel-kugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 So 10.05.2009
Autor: alex12456

Aufgabe
also gegeben sind M(7/1/6) ,P(3/-3/4),Q(3/0/7) und S(15/9/2)
Der Punkt P liegt auf K mit Mittelpunkt M
Gleichung der Kugel :
[mm] (x1-7)^2+(x2-1)^2+(x3-6)^2=36 [/mm]
und S liegt Ausserhalb der Kugel,da [mm] |\overline{MS}| [/mm] =12 und r = 6
so und SM ist der Durchmesser der Kugel k*
Ermitteln sie die Gleichung von K*

so EIGENDLICH r* ist leicht zu bestimmen einfach MS durch 2
also r = 6
aber wie bekomme ich nun M* ich habs skiziert und eigendlich müsste es  [mm] \overline{MS}/2 [/mm] sein oder???     ABER DIE Lösung lautet
K*=( [mm] x1-11)^2+(x2-5)^2+(x3-4)^2=36 [/mm]

ja wie man auf die punkte kommt ist klar einfach die einzelnen koordinaten von M mit dene von S adieren und dan durch 2 aber wieso??? VON Vektor M nach Vektor S also [mm] \overline{MS} [/mm]  müsste ich doch  [mm] \vec{S}-\vec{M} [/mm] und dan erst durch 2??????????

        
Bezug
kugel-kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 So 10.05.2009
Autor: MathePower

Hallo alex12456,

> also gegeben sind M(7/1/6) ,P(3/-3/4),Q(3/0/7) und
> S(15/9/2)
>  Der Punkt P liegt auf K mit Mittelpunkt M
>  Gleichung der Kugel :
>  [mm](x1-7)^2+(x2-1)^2+(x3-6)^2=36[/mm]
>  und S liegt Ausserhalb der Kugel,da [mm]|\overline{MS}|[/mm] =12
> und r = 6
>  so und SM ist der Durchmesser der Kugel k*
>  Ermitteln sie die Gleichung von K*
>  so EIGENDLICH r* ist leicht zu bestimmen einfach MS durch
> 2
>  also r = 6
>  aber wie bekomme ich nun M* ich habs skiziert und
> eigendlich müsste es  [mm]\overline{MS}/2[/mm] sein oder???     ABER
> DIE Lösung lautet
>  K*=( [mm]x1-11)^2+(x2-5)^2+(x3-4)^2=36[/mm]
>  
> ja wie man auf die punkte kommt ist klar einfach die
> einzelnen koordinaten von M mit dene von S adieren und dan
> durch 2 aber wieso??? VON Vektor M nach Vektor S also
> [mm]\overline{MS}[/mm]  müsste ich doch  [mm]\vec{S}-\vec{M}[/mm] und dan
> erst durch 2??????????


Nun, da M und S  Punkte auf der Kugel [mm]K^{\*}[/mm] sind,
liegt [mm]M^{\*}[/mm] genau in der Mitte von M und S.

Daher ist [mm]\overrightarrow{OM^{\*}}=\overrightarrow{OM}+\bruch{\overrightarrow{MS}}{2}=\bruch{\overrightarrow{OM}+\overrightarrow{OS}}{2}[/mm]


Gruß
MathePower

Bezug
                
Bezug
kugel-kugel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 So 10.05.2009
Autor: alex12456

Aufgabe
ja aber ..

aber
[mm] \overrightarrow{OM}+ \overrightarrow{MS}/2 [/mm]  = [mm] \overrightarrow{OM}+(\overrightarrow{OS}-\overrightarrow{OM}) [/mm] /2
oder nicht?

Bezug
                        
Bezug
kugel-kugel: Antwort
Status: (Antwort) fertig Status 
Datum: 19:31 So 10.05.2009
Autor: MathePower

Hallo alex12456,

> ja aber ..
>  aber
>  [mm]\overrightarrow{OM}+ \overrightarrow{MS}/2[/mm]  =
> [mm]\overrightarrow{OM}+(\overrightarrow{OS}-\overrightarrow{OM})[/mm]
> /2
>  oder nicht?


Doch.


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]