limsup < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:28 Mi 03.08.2005 | Autor: | Bastiane |
Hallo!
Ich habe hier bei der Definition vom limsup folgendes stehen:
[Dateianhang nicht öffentlich]
Kann mir jemand den ersten Satz erklären? Leider verstehe ich das nicht so ganz. Und dann vielleicht auch noch das Beispiel darunter.
Ich will mal versuchen zu erklären, was ich daran nicht verstehe: Also, das ganze läuft doch über n, oder? Und das k soll [mm] \ge [/mm] n sein, also wird das k doch immer größer, weil n immer größer wird. Und warum wird dann das Supremum über die Menge aller dieser a_ks kleiner? Irgendwas verstehe ich da nicht.
Viele Grüße
Bastiane
Dateianhänge: Anhang Nr. 1 (Typ: png) [nicht öffentlich]
|
|
|
|
Hallo Christiane,
[mm] $b_n:=sup\{a_k : k>n\}$ [/mm] Wenn nun n zunimmt, werden aus der Menge aller [mm] a_n [/mm] sukzessive werte "gestrichen", nähmlich alle [mm] $\le [/mm] n$. Somit kann [mm] b_n [/mm] nicht wachsen, da ja keine größeren Zahlen auftauchen, hinzukommen können. Wenn allerdings [mm] $M=max\{a_n : n\in\IN\}$ [/mm] eindeutig existiert, und [mm] $M=a_m$ [/mm] so ist [mm]sup\{a_k : k>m-1\}(=M) > sup\{a_k ; k>m\} (
Als Beispiel kannst du ja die Folge [mm] $a_n:=n^{-1}$ [/mm] betrachten.
[mm] $b_n:=sup(a_k: [/mm] k>n)$ hier ist offensichtlich [mm]sup(a_k : k>n) =a_{n+1}[/mm], da [mm] a_n [/mm] monoton fallend ist.
Damit ist aber auch [mm] $b_n=(n+1)^{-1}$ [/mm] monoton fallend.
analoges gilt dann offensichtlich auch für den lim inf
Ich hoffe das war jetzt einigermaßen verständlich.... sonst meld dich einfach nochmal
Gruß Samuel
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:49 Mi 03.08.2005 | Autor: | statler |
Hallo Christiane, hier spricht Hamburg-Harburg!
Das ist eben das Problem mit unendlich, und deswegen bin ich in erster Näherung ein Gegner dieser Sprechweise, daß eine Folge gegen unendlich konvergieren kann. Von einer Folge, die das tut, sagt man besser, daß sie divergiert.
Hier muß man sich darauf einigen, daß die Folge unendlich unendlich unendlich ... monoton fallend ist (monoton steigend natürlich auch, dto. konstant). unendlich ist natürlich auch gleich unendlich, aber auch kleiner als unendlich, da ja unendlich minus 1 gleich unendlich ist. Völlig verwirrend! Vergiß es einfach!
Einen schönen Gruß
Dieter
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:26 Mi 03.08.2005 | Autor: | Bastiane |
Hallo Dieter aus Hamburg-Harburg (wo oder was auch immer das sein mag *g*)
> Das ist eben das Problem mit unendlich, und deswegen bin
> ich in erster Näherung ein Gegner dieser Sprechweise, daß
> eine Folge gegen unendlich konvergieren kann. Von einer
> Folge, die das tut, sagt man besser, daß sie divergiert.
>
> Hier muß man sich darauf einigen, daß die Folge unendlich
> unendlich unendlich ... monoton fallend ist (monoton
> steigend natürlich auch, dto. konstant). unendlich ist
> natürlich auch gleich unendlich, aber auch kleiner als
> unendlich, da ja unendlich minus 1 gleich unendlich ist.
> Völlig verwirrend! Vergiß es einfach!
Danke für die Antwort - ich denke, dann ist ja alles klar. Ansonsten frage ich dann nochmal, falls ich doch nochmal beim Grübeln darüber einen Knoten ins Gehinr bekomme.
Viele Grüße
Christiane
|
|
|
|