lineare Abbildungen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:59 Mo 08.06.2015 | Autor: | rsprsp |
Aufgabe | Zeigen oder Widerlegen Sie, dass die folgenden Abbildungen lineare Abbildungen sind.
a) ϕ : [mm] \IR^{2} [/mm] → [mm] \IR^{2}, ϕ(\vektor{x \\ y}) \mapsto \vektor{xy \\ x+y}
[/mm]
b) ϕ : [mm] \IR^{2} [/mm] → [mm] \IR^{2}, ϕ(\vektor{x \\ y}) \mapsto \vektor{x+1 \\ y-1}
[/mm]
c) ϕ : [mm] \IR^{2} [/mm] → [mm] \IR^{2}, ϕ(\vektor{x \\ y}) \mapsto \vektor{|x| \\ |y|}
[/mm]
d) ϕ : [mm] \IR^{n} [/mm] → [mm] \IR, [/mm] ϕ(x) [mm] \mapsto ||x||_{2} [/mm] |
Ich soll jetzt die Axiome der linearen Abbildung prüfen
d.h.:
ϕ (a)+ϕ (b) = ϕ (a+b)
ϕ [mm] (\lambda [/mm] a)= [mm] \lambda [/mm] ϕ (a)
a) ϕ [mm] (\vektor{x_{1} \\ y_{1}})+?(\vektor{x_{2} \\ y_{2}}) \mapsto \vektor{x_{1}y_{1} \\ x_{1}+y_{1}}+\vektor{x_{2}y_{2} \\ x_{2}+y_{2}} [/mm] = [mm] \vektor{x_{1}y_{1}+x_{2}y_{2} \\ x_{1}+y_{1}+x_{2}+y_{2}} [/mm]
wobei
ϕ [mm] (\vektor{x_{1}+x_{2} \\ y_{1}+y_{2}}) \mapsto \vektor{(x_{1}+x_{2})(y_{1}+y_{2})\\ x_{1}+x_{2}+y_{1}+y_{2}} [/mm] = [mm] \vektor{(x_{1}y_{1}+x_{2}y_{1}+x_{1}y_{2}+x_{2}y_{2})\\ x_{1}+x_{2}+y_{1}+y_{2}}
[/mm]
also
ϕ (a)+ϕ (b) [mm] \not= [/mm] ϕ (a+b)
keine lineare Abbildung !
b)ϕ [mm] (\vektor{x_{1} \\ y_{1}})+ϕ (\vektor{x_{2} \\ y_{2}}) \mapsto \vektor{x_{1}+1 \\ y_{1}-1}+\vektor{x_{2}+1 \\ y_{2}-1} [/mm] = [mm] \vektor{x_{1}+1+x_{2}+1 \\ y_{1}-1+y_{2}-1} [/mm] = [mm] \vektor{x_{1}+x_{2}+2 \\ y_{1}+y_{2}-2}
[/mm]
wobei
ϕ [mm] (\vektor{x_{1}+x_{2} \\ y_{1}+y_{2}}) \mapsto \vektor{x_{1}+x_{2}+1 \\ x_{1}+x_{2}-1}
[/mm]
ϕ (a)+?(b) [mm] \not= [/mm] ϕ (a+b)
c) ϕ [mm] (\vektor{x_{1} \\ y_{1}})+ϕ (\vektor{x_{2} \\ y_{2}}) \mapsto \vektor{|x_{1}| \\ |y_{1}|} [/mm] + [mm] \vektor{|x_{2}| \\ |y_{2}|} [/mm] = [mm] \vektor{|x_{1}|+|x_{2}| \\ |y_{1}|+|y_{2}|}
[/mm]
wobei
ϕ [mm] (\vektor{x_{1}+x_{2} \\ y_{1}+y_{2}}) \mapsto \vektor{|x_{1}+x_{2}| \\ |y_{1}+y_{2}|}
[/mm]
und |x|+|y|=|x+y| da z.B.
x=3;y=-3
|x|+|y|= |3|+|-3|=3+3=6
|x+y| = |3-3| = 0
Ist alles bis dahin richrig ?????
--------------------------------------------
d)
Kann mir jemand bei d bitte helfen ?
ϕ (x) [mm] \mapsto ||x||_{2} [/mm] = [mm] \wurzel[]{x_{1}^{2}+...+x_{n}^{2}} [/mm] und [mm] x=\vektor{x_{1} \\...\\ x_{n}}
[/mm]
ϕ (x) + ϕ (y) [mm] \mapsto ||x||_{2} [/mm] + [mm] ||y||_{2} [/mm] = [mm] \wurzel[]{x_{1}^{2}+...+x_{n}^{2}} [/mm] + [mm] \wurzel[]{y_{1}^{2}+...+y_{n}^{2}}
[/mm]
ϕ (x+y) [mm] \mapsto ||x+y||_{2} [/mm] = [mm] \wurzel[]({x_{1}+y_{1})^{2}+...+(x_{n}+y_{n})^{2}}
[/mm]
und
[mm] \lambda [/mm] ϕ (x) [mm] \mapsto \lambda ||x||_{2} [/mm] = [mm] \lambda \wurzel[]{x_{1}^{2}+...+x_{n}^{2}}
[/mm]
ϕ [mm] (\lambda [/mm] x) [mm] \mapsto ||\lambda x||_{2} [/mm] = [mm] \wurzel[]{(\lambda x_{1})^{2}+...+(\lambda x_{n})^{2}}
[/mm]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:29 Mo 08.06.2015 | Autor: | Fulla |
> Zeigen oder Widerlegen Sie, dass die folgenden Abbildungen
> lineare Abbildungen sind.
>
> a) ϕ : [mm]\IR^{2}[/mm] → [mm]\IR^{2}, ϕ(\vektor{x \\ y}) \mapsto \vektor{xy \\ x+y}[/mm]
>
> b) ϕ : [mm]\IR^{2}[/mm] → [mm]\IR^{2}, ϕ(\vektor{x \\ y}) \mapsto \vektor{x+1 \\ y-1}[/mm]
>
> c) ϕ : [mm]\IR^{2}[/mm] → [mm]\IR^{2}, ϕ(\vektor{x \\ y}) \mapsto \vektor{|x| \\ |y|}[/mm]
>
> d) ϕ : [mm]\IR^{n}[/mm] → [mm]%5CIR%2C[/mm] ϕ(x) [mm]\mapsto ||x||_{2}[/mm]
> Ich soll
> jetzt die Axiome der linearen Abbildung prüfen
> d.h.:
> ϕ (a)+ϕ (b) = ϕ (a+b)
> ϕ [mm](\lambda[/mm] a)= [mm]\lambda[/mm] ϕ (a)
>
> a) ϕ [mm](\vektor{x_{1} \\ y_{1}})+?(\vektor{x_{2} \\ y_{2}}) \mapsto \vektor{x_{1}y_{1} \\ x_{1}+y_{1}}+\vektor{x_{2}y_{2} \\ x_{2}+y_{2}}[/mm]
> = [mm]\vektor{x_{1}y_{1}+x_{2}y_{2} \\ x_{1}+y_{1}+x_{2}+y_{2}}[/mm]
> wobei
> ϕ [mm](\vektor{x_{1}+x_{2} \\ y_{1}+y_{2}}) \mapsto \vektor{(x_{1}+x_{2})(y_{1}+y_{2})\\ x_{1}+x_{2}+y_{1}+y_{2}}[/mm]
> = [mm]\vektor{(x_{1}y_{1}+x_{2}y_{1}+x_{1}y_{2}+x_{2}y_{2})\\ x_{1}+x_{2}+y_{1}+y_{2}}[/mm]
>
> also
> ϕ (a)+ϕ (b) [mm]\not=[/mm] ϕ (a+b)
>
> keine lineare Abbildung !
>
> b)ϕ [mm](\vektor{x_{1} \\ y_{1}})+ϕ (\vektor{x_{2} \\ y_{2}}) \mapsto \vektor{x_{1}+1 \\ y_{1}-1}+\vektor{x_{2}+1 \\ y_{2}-1}[/mm]
> = [mm]\vektor{x_{1}+1+x_{2}+1 \\ y_{1}-1+y_{2}-1}[/mm] =
> [mm]%5Cvektor%7Bx_%7B1%7D%2Bx_%7B2%7D%2B2%20%5C%5C%20y_%7B1%7D%2By_%7B2%7D-2%7D[/mm]
> wobei
> ϕ [mm](\vektor{x_{1}+x_{2} \\ y_{1}+y_{2}}) \mapsto \vektor{x_{1}+x_{2}+1 \\ x_{1}+x_{2}-1}[/mm]
>
> ϕ (a)+?(b) [mm]\not=[/mm] ϕ (a+b)
>
>
> c) ϕ [mm](\vektor{x_{1} \\ y_{1}})+ϕ (\vektor{x_{2} \\ y_{2}}) \mapsto \vektor{|x_{1}| \\ |y_{1}|}[/mm]
> + [mm]\vektor{|x_{2}| \\ |y_{2}|}[/mm] = [mm]%5Cvektor%7B%7Cx_%7B1%7D%7C%2B%7Cx_%7B2%7D%7C%20%5C%5C%20%7Cy_%7B1%7D%7C%2B%7Cy_%7B2%7D%7C%7D[/mm]
>
> wobei
> ϕ [mm](\vektor{x_{1}+x_{2} \\ y_{1}+y_{2}}) \mapsto \vektor{|x_{1}+x_{2}| \\ |y_{1}+y_{2}|}[/mm]
>
> und |x|+|y|=|x+y| da z.B.
> x=3;y=-3
> |x|+|y|= |3|+|-3|=3+3=6
> |x+y| = |3-3| = 0
>
>
> Ist alles bis dahin richrig ?????
Hallo rsprsp,
ja, das passt (wenn du aus dem roten "=" ein [mm] "$\neq$" [/mm] machst).
> --------------------------------------------
>
> d)
> Kann mir jemand bei d bitte helfen ?
>
> ϕ (x) [mm]\mapsto ||x||_{2}[/mm] =
> [mm]\wurzel[]{x_{1}^{2}+...+x_{n}^{2}}[/mm] und [mm]x=\vektor{x_{1} \\...\\ x_{n}}[/mm]
>
> ϕ (x) + ϕ (y) [mm]\mapsto ||x||_{2}[/mm] + [mm]||y||_{2}[/mm] =
> [mm]\wurzel[]{x_{1}^{2}+...+x_{n}^{2}}[/mm] +
> [mm]\wurzel[]{y_{1}^{2}+...+y_{n}^{2}}[/mm]
>
> ϕ (x+y) [mm]\mapsto ||x+y||_{2}[/mm] =
> [mm]\wurzel[]({x_{1}+y_{1})^{2}+...+(x_{n}+y_{n})^{2}}[/mm]
Und? Sind die rechten Seiten jeweils gleich?
> und
>
> [mm]\lambda[/mm] ϕ (x) [mm]\mapsto \lambda ||x||_{2}[/mm] = [mm]\lambda \wurzel[]{x_{1}^{2}+...+x_{n}^{2}}[/mm]
>
> ϕ [mm](\lambda[/mm] x) [mm]\mapsto ||\lambda x||_{2}[/mm] =
> [mm]\wurzel[]{(\lambda x_{1})^{2}+...+(\lambda x_{n})^{2}}[/mm]
Auch hier: gilt Gleichheit?
Lieben Gruß,
Fulla
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:50 Mo 08.06.2015 | Autor: | rsprsp |
[mm] \lambda [/mm] ϕ (x) [mm] \mapsto \lambda ||x||_{2} [/mm] = [mm] \lambda \wurzel[]{x_{1}^{2}+...+x_{n}^{2}}
[/mm]
ϕ [mm] (\lambda [/mm] x) [mm] \mapsto ||\lambda x||_{2} [/mm] = [mm] \wurzel[]{(\lambda x_{1})^{2}+...+(\lambda x_{n})^{2}} [/mm] = [mm] \wurzel[]{ \lambda ((x_{1})^{2}+...+(x_{n})^{2})} [/mm] = [mm] \wurzel[]{\lambda} [/mm] * [mm] \wurzel[]{ ((x_{1})^{2}+...+(x_{n})^{2})}
[/mm]
also ungleich... Ist das richtig formuliert ?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:35 Mo 08.06.2015 | Autor: | Marcel |
Hallo,
> [mm]\lambda[/mm] ϕ (x) [mm]\mapsto \lambda ||x||_{2}[/mm] = [mm]\lambda \wurzel[]{x_{1}^{2}+...+x_{n}^{2}}[/mm]
>
> ϕ [mm](\lambda[/mm] x) [mm]\mapsto ||\lambda x||_{2}[/mm] =
> [mm]\wurzel[]{(\lambda x_{1})^{2}+...+(\lambda x_{n})^{2}}[/mm] =
> [mm]\wurzel[]{ \lambda ((x_{1})^{2}+...+(x_{n})^{2})}[/mm] =
> [mm]\wurzel[]{\lambda}[/mm] * [mm]\wurzel[]{ ((x_{1})^{2}+...+(x_{n})^{2})}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
>
> also ungleich... Ist das richtig formuliert ?
nein, da sind Fehler drin. Aber warum machst Du Dir das Leben so schwer?
Wäre $\phi$ linear, so müsste FÜR ALLE $\lambda \in \IR$ und ALLE $x \in \IR^n$ auch
$\phi(\lambda x)=\lambda*\phi(x)$
gelten.
Okay, verfolgen wir erstmal Deinen Weg, also wir machen es analog zu
dem, was Du oben machst, ist: Sei $x \in \IR^n$ beliebig, und $\lambda \in \IR\,.$ Dann gilt
übrigens keineswegs
$\phi(\lambda x)=\sqrt{\lambda}*\phi(x)\,;$
SONDERN:
Schreib' es richtig hin, beachte $(ab)^2=a^2b^2$ und $\sqrt{a^2}=\red{|\,}a\red{\,|}$ und dann
siehst Du
(*) $\phi(\lambda*x)=\red{|\,}\lambda\red{\,|}}*\phi(x)\,.$
Wir brauchen aber jetzt nur ein $\lambda \in \IR$ und ein $x \in \IR^n$ zu finden,
so dass die rechte Seite von (*) nicht mit $\lambda*\phi(x)$ zusammenpasst.
Tipp: Sei $e_1$ der Vektor aus $\IR^n$, der nur an der ersten Komponente eine
1 stehen hat und ansonsten nur aus Nullen besteht:
$e_1=\vektor{1\\0\\.\\.\\.\\0}={(\delta_{1,k})_{k=1,...,n}}^T$
Wähle zudem bspw. $\lambda=-1\,.$
Dann:
$\phi(e_1)=1\,.$
Weiter
$\phi(\lambda*e_1)=\phi(-e_1)=1\,.$
Aber
$\lambda*\phi(e_1)=-1*\phi(e_1)=-1*1=\,\red{-}\,1$.
Wir haben also ein Paar $(\lambda,x)=(-1,e_1) \in \IR \times \IR^n$ so gefunden,
dass
$\phi(\lambda*x) \neq \lambda*\phi(x)$
gilt. (Der einzige Trick ist eigentlich: Es muss $\phi(x) \neq 0$ sein
und $\lambda \neq \red{|\,}\lambda\red{\,|}$, also $\lambda < 0\,.$)
Gruß,
Marcel
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:22 Mo 08.06.2015 | Autor: | Marcel |
Hallo,
> b) ϕ : [mm]\IR^{2}[/mm] → [mm]\IR^{2}, ϕ(\vektor{x \\ y}) \mapsto \vektor{x+1 \\ y-1}[/mm]
nur mal ein Hinweis: Hier kannst Du schreiben
[mm] $\phi((x,y)^T)=\vektor{1, & 0\\ 0, &1}*\vektor{x\\y}+\vektor{1\\-1}$ [/mm]
Diese Abbildung ist (echt) affin linear; denn da sie den Nullvektor NICHT auf
den Nullvektor abbildet, kann sie nicht linear sein.
Übrigens ist das ein Standardtest, den man direkt schnell durchführen kann:
Es gilt: Ist $f [mm] \colon [/mm] V [mm] \to [/mm] W$ eine lineare Abbildung zwischen den K-Vektorräumen
[mm] $V\,$ [/mm] und [mm] $W\,,$ [/mm] so gilt [mm] $f(0_V)=0_W\,.$
[/mm]
Die Kontraposition liefert: Aus [mm] $f(0_V) \neq 0_W$ [/mm] folgt direkt, dass $f [mm] \colon [/mm] V [mm] \to [/mm] W$
NICHT linear sein kann!
Gruß,
Marcel
|
|
|
|