max. Volumen, Blechtonne < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:46 Mi 19.03.2008 | Autor: | itse |
Aufgabe | Welches Volumen kann eine oben offene zylinderformige Blechtonne höchstens haben, wenn zu ihrer Herstellung genau 3m² Blech verbraucht werden? |
Hallo Zusammen,
die Extremalbedingung lautet:
V(r,h) = [mm] \pi [/mm] r²h
Das Volumen ist durch den Materialverbrauch beschränkt, daraus ergibt sich für die Manteloberfläche (Nebenbedingung):
O = [mm] \pi [/mm] r² + [mm] 2\pi [/mm] rh
dies nun nach h umformen:
h = [mm] \bruch{O - \pi r²}{2\pi r} [/mm] 'kann ich nicht kürzen, denn Summen kürzen nur die Dummen, oder?
aber vereinfachen und zwar:
h = [mm] \bruch{1}{2\pi r}(O [/mm] - [mm] \pi [/mm] r²)
und nun in die Extremalbedingung einsetzen:
V(r) = [mm] \pi [/mm] r² [mm] \cdot{} \bruch{1}{2\pi r}(O [/mm] - [mm] \pi [/mm] r²) = [mm] \bruch{\pi r²}{2\pi r}(O [/mm] - [mm] \pi [/mm] r²) = [mm] \bruch{1}{2}\bruch{\pi r²}{\pi r}(O [/mm] - [mm] \pi [/mm] r²) = [mm] \bruch{1}{2} \cdot{} [/mm] r(O - [mm] \pi [/mm] r²) = [mm] \bruch{1}{2} [/mm] (Or - [mm] \pi [/mm] r³)
dies nun ableiten:
V'(r) = [mm] \bruch{1}{2}(O [/mm] - [mm] 3\pi [/mm] r²) 'warum fällt denn das r weg, ist dies wie ein x zu behandeln?
V''(r) = [mm] \bruch{1}{2}(- 6\pi [/mm] r) = [mm] -3\pi [/mm] r 'das O fällt weg, Mantelfläche, da es eine normale Zahl ist und dies ergibt Null, oder?
V'(r) = 0 -> [mm] \bruch{1}{2}(O [/mm] - [mm] 3\pi [/mm] r²) = 0 |/0,5
O - [mm] 3\pi [/mm] r² = 0
r = [mm] \wurzel{\bruch{-O}{-3\pi}} [/mm] = [mm] \pm \wurzel{\bruch{O}{3\pi}}
[/mm]
für r kommt nur ein positiver Wert vor, also V''(+ [mm] \wurzel{\bruch{O}{3\pi}}) [/mm] < 0 wegen [mm] -3\pi \cdot{} [/mm] (+) r = -O
Somit liegt das größtmögliche Volumen bei r = + [mm] \wurzel{\bruch{O}{3\pi}} [/mm] = + [mm] \wurzel{\bruch{3}{3\pi}} [/mm] = 0,564m
In der Lösung steht noch, dass sich das maximale Volumen aus [mm] V_{max} [/mm] = [mm] \bruch{O}{3} \wurzel{\bruch{O}{3\pi}} [/mm] ergebe. Wenn ich nun den Ausdruck von r in V(r) einsetze komme ich soweit:
V(+ [mm] \wurzel{\bruch{O}{3\pi}}) [/mm] = [mm] \bruch{O}{2\pi} \cdot{} \bruch{1}{2\pi \wurzel{\bruch{O}{3\pi}}} [/mm] (O - [mm] \bruch{O}{2\pi}) [/mm] = ? 'wie geht es dann weiter
Vielen Dank im Voraus.
|
|
|
|
> Welches Volumen kann eine oben offene zylinderformige
> Blechtonne höchstens haben, wenn zu ihrer Herstellung genau
> 3m² Blech verbraucht werden?
> Hallo Zusammen,
>
> die Extremalbedingung lautet:
>
> V(r,h) = [mm]\pi[/mm] r²h
>
> Das Volumen ist durch den Materialverbrauch beschränkt,
> daraus ergibt sich für die Manteloberfläche
> (Nebenbedingung):
>
> O = [mm]\pi[/mm] r² + [mm]2\pi[/mm] rh
>
> dies nun nach h umformen:
>
> h = [mm]\bruch{O - \pi r²}{2\pi r}[/mm] 'kann ich nicht kürzen, denn
> Summen kürzen nur die Dummen, oder?
Hallo,
ja.
>
> aber vereinfachen und zwar:
>
> h = [mm]\bruch{1}{2\pi r}(O[/mm] - [mm]\pi[/mm] r²)
>
> und nun in die Extremalbedingung einsetzen:
>
> V(r) = [mm]\pi[/mm] r² [mm]\cdot{} \bruch{1}{2\pi r}(O[/mm] - [mm]\pi[/mm] r²) =
> [mm]\bruch{\pi r²}{2\pi r}(O[/mm] - [mm]\pi[/mm] r²) = [mm]\bruch{1}{2}\bruch{\pi r²}{\pi r}(O[/mm]
> - [mm]\pi[/mm] r²) = [mm]\bruch{1}{2} \cdot{}[/mm] r(O - [mm]\pi[/mm] r²) =
> [mm]\bruch{1}{2}[/mm] (Or - [mm]\pi[/mm] r³)
>
> dies nun ableiten:
>
> V'(r) = [mm]\bruch{1}{2}(O[/mm] - [mm]3\pi[/mm] r²) 'warum fällt denn das r
> weg, ist dies wie ein x zu behandeln?
Haargenau. Du hast Deine Funktion nun in Abhängigkeit von r (statt wie gewohnt von x) und leitest entsprechend nach r (statt wie gewohnt von x) ab.
>
> V''(r) = [mm]\bruch{1}{2}(- 6\pi[/mm] r) = [mm]-3\pi[/mm] r 'das O fällt weg,
> Mantelfläche, da es eine normale Zahl ist und dies ergibt
> Null, oder?
Ja.
>
> V'(r) = 0 -> [mm]\bruch{1}{2}(O[/mm] - [mm]3\pi[/mm] r²) = 0 |/0,5
>
> O - [mm]3\pi[/mm] r² = 0
>
> r = [mm]\wurzel{\bruch{-O}{-3\pi}}[/mm] = [mm]\pm \wurzel{\bruch{O}{3\pi}}[/mm]
>
> für r kommt nur ein positiver Wert vor, also V''(+
> [mm]\wurzel{\bruch{O}{3\pi}})[/mm] < 0 wegen [mm]-3\pi \cdot{}[/mm] (+) r =
> -O
>
> Somit liegt das größtmögliche Volumen bei r = +
> [mm]\wurzel{\bruch{O}{3\pi}}[/mm] = + [mm]\wurzel{\bruch{3}{3\pi}}[/mm] =
> 0,564m
>
>
> In der Lösung steht noch, dass sich das maximale Volumen
> aus [mm]V_{max}[/mm] = [mm]\bruch{O}{3} \wurzel{\bruch{O}{3\pi}}[/mm] ergebe.
> Wenn ich nun den Ausdruck von r in V(r) einsetze komme ich
> soweit:
>
> V(+ [mm]\wurzel{\bruch{O}{3\pi}})[/mm] = [mm]\bruch{O}{2\pi} \cdot{} \bruch{1}{2\pi \wurzel{\bruch{O}{3\pi}}}[/mm] (O - [mm]\bruch{O}{2\pi})[/mm] = ? 'wie geht es dann weiter
Du scheinst es gleich hier einzusetzen:
V(r) = $ [mm] \pi [/mm] $ r² $ [mm] \cdot{} \bruch{1}{2\pi r}(O [/mm] $ - $ [mm] \pi [/mm] $ r²) , und beim Einsetzen ist irgendwas schiefgegangen. (Einfacher wär's gewesen, gleich ...= [mm]\bruch{1}{2} \cdot{}[/mm] r(O - [mm]\pi[/mm] r²) zu verwenden.)
Gucken wir also mal:
[mm] V(\wurzel{\bruch{O}{3\pi}}) [/mm] = $ [mm] \pi $\bruch{O}{3\pi} [/mm] $ [mm] \cdot{} \bruch{1}{2\pi \wurzel{\bruch{O}{3\pi}}}(O [/mm] $ - $ [mm] \pi $\bruch{O}{3\pi}) [/mm]
= $ [mm] $\bruch{O}{3} [/mm] $ [mm] \cdot{} \bruch{1}{2\pi \wurzel{\bruch{O}{3\pi}}} [/mm] (O $ - [mm] $$\bruch{O}{3}) [/mm]
[mm] =\bruch{O}{3\pi} \cdot{} \bruch{1}{2}*\wurzel{\bruch{3\pi}{0}} [/mm] (O - [mm] \bruch{O}{3}) [/mm]
= [mm] \bruch{1}{2}*\wurzel{\bruch{O}{3\pi}}*\bruch{2}{3}O
[/mm]
[mm] =\bruch{O}{3}*\wurzel{\bruch{O}{3\pi}}
[/mm]
Gruß v. Angela
|
|
|
|