www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - monoton fallende Funktion
monoton fallende Funktion < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

monoton fallende Funktion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 11:25 Mi 04.08.2010
Autor: maggu

Aufgabe
gegeben:
Eine Iterationsvariable: $i = 1, ... $
Ein Startwert: $svar$

gesucht:
Eine Funktion $f(i)$ so dass $svar - f(i)$ für größer werdendes $i$ nach zB 100 Iterationen null ist, also zB gilt: $svar - f(100) = 0$
Wichtig ist dass diese Funktion nicht linear sein sollte, also die Werte bei kleinen $i$ klein sind und mit wachsendem $i$ im Verhältnis größer werden.
Es wäre zudem sehr gut wenn die Funktion so ausgestaltet ist, dass der Funktionswert nie größer als $svar$ wird, ohne dass ich das bspw. per if-Abfrage in jeder Iteration prüfen muss.

Hallo,

ich bin für jeglichen Vorschlag dankbar.

Grüße
Max

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
monoton fallende Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 Mi 04.08.2010
Autor: Gonozal_IX

Huhu,

deine Aussagen widersprechen sich leicht..........

> gegeben:
> Eine Iterationsvariable: [mm]i = 1, ...[/mm]
> Ein Startwert: [mm]svar = 0.8[/mm]
>  
> gesucht:
> Eine Funktion [mm]f(i)[/mm] so dass [mm]svar - f(i)[/mm] für größer
> werdendes [mm]i[/mm] nach zB 100 Iterationen null ist, also [mm]svar - f(100) = 0[/mm]

Ok, also muss schonmal gelten: $f(100) = 0.8$

> Wichtig ist dass diese Funktion nicht linear sein sollte,
> also die Werte bei kleinen [mm]i[/mm] klein sind und mit wachsendem
> [mm]i[/mm] im Verhältnis größer werden.

Betragsmäßig grösser? Denn grösser als 0.8 können die Werte nicht werden, denn du sagst ja:

>  Es wäre zudem sehr gut wenn die Funktion so ausgestaltet
> ist, dass der Funktionswert nie größer als [mm]svar[/mm] wird,
> ohne dass ich das bspw. per if-Abfrage in jeder Iteration
> prüfen muss.

D.h. wenn die Funktionswerte nie größer als svar werden soll, dass h(i) = svar - f(i) eine nichtnegative Funktion ist. D.h. aber, dass wenn $svar - f(100) = 0$ gelten soll, an der Stelle i=100 ein Minimum vorliegt, d.h. f(i) darf nie grösser als 0.8 werden, jetzt sagst du aber, mit steigendem i soll f(i) noch grösser werden..... also das widerspricht sich alles....

MFG,
Gono

Bezug
                
Bezug
monoton fallende Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:02 Mi 04.08.2010
Autor: maggu

Ok, nochmal.

Ich suche eine Funktion die in Abhängigkeit der Iteration $i$ einen Wert ausgibt, dieser Wert soll nie größer als der Startwert sein, damit die Differenz von Startwert und Funktionswert nicht kleiner null wird.
Weiterhin soll gelten, dass die Funktionswerte bei kleinen $i$ klein sein sollen und mit steigendem $i$ eben größer werden aber nicht größer als der Startwert. Zusätzlich sollen die Funktionswerte bei kleinem $i$ eben verhältnismäßig kleiner sein als bei größeren $i$ -> Funktion soll nicht linear sein, "eher sowas logarithmisches".

Bezug
                        
Bezug
monoton fallende Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:16 Mi 04.08.2010
Autor: Gonozal_IX

Huhu,

naja, etwas nicht lineares was für [mm] $i\to\infty$ [/mm] gegen 0 konvergiert, wäre beispielsweise:

[mm] $e^{-i}$, [/mm] ist ja schon fast was logarithmisches, grösser Null und sieht auch sonst ganz gut aus ;-)

Ergo sagen wir jetzt, es soll gelten: $0.8 - f(i) = [mm] e^{-i}$ [/mm]

[mm] $\gdw [/mm] f(i) = 0.8 - [mm] e^{-i}$ [/mm]

liefert dir damit eigentlich alle gewünschten Eigenschaften und die Differenz wird bei Computerberechnungen auch irgendwann Null.

MFG,
Gono.


Bezug
                        
Bezug
monoton fallende Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 12:54 Mi 04.08.2010
Autor: gfm


> Ok, nochmal.
>  
> Ich suche eine Funktion die in Abhängigkeit der Iteration
> [mm]i[/mm] einen Wert ausgibt, dieser Wert soll nie größer als der
> Startwert sein, damit die Differenz von Startwert und
> Funktionswert nicht kleiner null wird.
> Weiterhin soll gelten, dass die Funktionswerte bei kleinen
> [mm]i[/mm] klein sein sollen und mit steigendem [mm]i[/mm] eben größer
> werden aber nicht größer als der Startwert. Zusätzlich
> sollen die Funktionswerte bei kleinem [mm]i[/mm] eben
> verhältnismäßig kleiner sein als bei größeren [mm]i[/mm] ->
> Funktion soll nicht linear sein, "eher sowas
> logarithmisches".

Wen Du irrationale oder transzendente Funktionen vermeiden möchtest und eine Schar von Funktionen mit den eigenschaften haben möchstest,

könntest Du den Ansatz [mm] f(x)=ax^4+bx^3+cx^2 [/mm] wählen und a,b und c bestimmst durch

1) f(100)=0,8
2) f'(100)=0
3) f'(x)>0 auf 0<x<100

c und b werden dann wegen 1) und 2) von a abhängen, welches durch 3) aus einer erlaubten Bereich zu nehmen ist.

Der Ansatz erfüllt automatisch f(0)=0 und f'(0)=0.

Falls dir die Potenzen auch nicht gefallen

kannst Du mit zwei Funktionen

f(x)=a+b/(x-c) (auf [mm] 0\le x\le x_s) [/mm] und g(x)=a'+b'/(x-c') (auf [mm] x_s
Und du erhälst einen variablen sigmoiden Verlauf.

Zu beachten ibei der Paerameterwahl st, dass für diese Funktionen (Hyperbeln) immer [mm] f'\not=0 [/mm] gilt (es sei denn Du wählst die b's=0, was aber nicht im Sinne des Erfinders ist).


LG

gfm




LG

gfm




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]