www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - multiplikation exponentialfkt
multiplikation exponentialfkt < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

multiplikation exponentialfkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:39 Sa 04.04.2009
Autor: bonanza

Hi,

ich hab folgendes Problem:
Wenn ich das Produkt [mm] 3,24*e^{-i*0,4*\pi}*5*cos(0,2*\pi*x-\bruch{2*\pi}{3}) [/mm] berechnen will und in eine cosinusfunktion verpacken will, brauch ich doch ansich nur 5*3,24 für den Faktor vor dem Cosinus und [mm] e^{-i*0,4*\pi}*e^{-i*2*\pi/3} [/mm] (ich hab ein paar Rechenschritte mit dem (inversen) Euler übersprungen) für die veränderte "Phase" zu berechnen, oder?

Wenn ich das jetzt in den Taschenrechner eintippe kommt für die "Phase" [mm] \bruch{14*\pi}{15} [/mm] heraus. Wenn ich die aber einfach die Exponenten addiere addiere komme ich auch [mm] -\bruch{16*\pi}{15} [/mm]

so käme ich dann auf 2 unterschiedliche Ergebnisse:
[mm] 16,2*cos(0,2*\pi*x+\bruch{14*\pi}{15}) [/mm]
bzw
[mm] 16,2*cos(0,2*\pi*x-\bruch{16*\pi}{15}) [/mm]

ich gehe mal davon aus, dass die 2. Variante richtig ist, aber wo ist (denk)fehler bei der "taschenrechner"variante?


danke schonmal im voraus für eure Hilfe :)

        
Bezug
multiplikation exponentialfkt: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Sa 04.04.2009
Autor: XPatrickX


> Hi,
>  
> ich hab folgendes Problem:
>  Wenn ich das Produkt
> [mm]3,24*e^{-i*0,4*\pi}*5*cos(0,2*\pi*x-\bruch{2*\pi}{3})[/mm]
> berechnen will und in eine cosinusfunktion verpacken will,
> brauch ich doch ansich nur 5*3,24 für den Faktor vor dem
> Cosinus und [mm]e^{-i*0,4*\pi}*e^{-i*2*\pi/3}[/mm] (ich hab ein paar
> Rechenschritte mit dem (inversen) Euler übersprungen) für
> die veränderte "Phase" zu berechnen, oder?
>  
> Wenn ich das jetzt in den Taschenrechner eintippe kommt für
> die "Phase" [mm]\bruch{14*\pi}{15}[/mm] heraus. Wenn ich die aber
> einfach die Exponenten addiere addiere komme ich auch
> [mm]-\bruch{16*\pi}{15}[/mm]
>  
> so käme ich dann auf 2 unterschiedliche Ergebnisse:
>  [mm]16,2*cos(0,2*\pi*x+\bruch{14*\pi}{15})[/mm]
>  bzw
> [mm]16,2*cos(0,2*\pi*x-\bruch{16*\pi}{15})[/mm]

Hallo,

da der Cosinus [mm] 2\pi [/mm] -periodisch ist, sind beide Ergebnisse identisch. Es ist ja [mm] -\frac{16}{15}\pi+2\pi=\frac{14}{15}\pi. [/mm]

Gruß Patrick

>  
> ich gehe mal davon aus, dass die 2. Variante richtig ist,
> aber wo ist (denk)fehler bei der "taschenrechner"variante?
>  
>
> danke schonmal im voraus für eure Hilfe :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]