n-dimensionales Volumen < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:58 Sa 15.12.2007 | Autor: | jumape |
Aufgabe | Seien [mm] m,n\in \IN [/mm] und m<n. Berechnen Sie das n-dimensionale Volumen von [mm] [(x_1,x_2,...,x_n)\in \IR^n; x_1^2+.......+x_m^2 \le x_{m+1}^2+......+x_n^2 \le [/mm] 1] |
Ich habe das erst mal für die ersten drei n ausprobiert. Für n=1 macht das ganze keinen Sinn, für n=2 kommt 2 raus, da man zwei rechtwinklige Dreiecke erhält deren hypothenuse die Länge zwei hat und die Höhe 1.
Im dreidimensionalen habe ich [mm] m\bruch{2}{3} \pi. [/mm] Es handelt sich um zwei Kegel der Grundfläche [mm] \pi [/mm] für m=2.
Leider weiß ich jetzt nicht weiter bei der Fortsetzung für höhere Dimensionen. Es wäre nett wenn mir da jemand helfen könnte.
Außerdem habe ich mir überlegt ,dass man das über die Polarkoordinaten machen könnte: [mm] \integral_{x_1^2+...+x_m^2\lex_{m+1}^2+....+x_n^2\le1}1 d\lambda_n= \integral_{x_{m+1}^2+....+x_n^2\le 1}\integral_{x_1^2+....+x_m^2 \le x_{m+1}^2+...+x_n^2\le1} 1d\lambda_n= \integral_{x_{m+1}^2+....+x_n^2\le1}\phi_m(\wurzel{x_{m+1}^2+....+x_{n}^2})^nd\lambda_{n-m}
[/mm]
Wobei [mm] \phi_1=2, \phi_2=\pi [/mm] , [mm] \phi_{2k}=\bruch{\pi^k}{k!}, \phi_{n+2}=\bruch{2\pi}{n+2}\phi_n
[/mm]
Leider komme ich da nicht weiter.
Vielleicht kann mir jemand helfen.
|
|
|
|
Hi,
> Seien [mm]m,n\in \IN[/mm] und m<n. Berechnen Sie das n-dimensionale
> Volumen von [mm][(x_1,x_2,...,x_n)\in \IR^n; x_1^2+.......+x_m^2 \le x_{m+1}^2+......+x_n^2 \le[/mm]
> 1]
> Ich habe das erst mal für die ersten drei n ausprobiert.
> Für n=1 macht das ganze keinen Sinn, für n=2 kommt 2 raus,
> da man zwei rechtwinklige Dreiecke erhält deren hypothenuse
> die Länge zwei hat und die Höhe 1.
> Im dreidimensionalen habe ich [mm]m\bruch{2}{3} \pi.[/mm] Es
> handelt sich um zwei Kegel der Grundfläche [mm]\pi[/mm] für m=2.
> Leider weiß ich jetzt nicht weiter bei der Fortsetzung für
> höhere Dimensionen. Es wäre nett wenn mir da jemand helfen
> könnte.
>
> Außerdem habe ich mir überlegt ,dass man das über die
> Polarkoordinaten machen könnte:
> [mm]\integral_{x_1^2+...+x_m^2\lex_{m+1}^2+....+x_n^2\le1}1 d\lambda_n= \integral_{x_{m+1}^2+....+x_n^2\le 1}\integral_{x_1^2+....+x_m^2 \le x_{m+1}^2+...+x_n^2\le1} 1d\lambda_n= \integral_{x_{m+1}^2+....+x_n^2\le1}\phi_m(\wurzel{x_{m+1}^2+....+x_{n}^2})^nd\lambda_{n-m}[/mm]
>
> Wobei [mm]\phi_1=2, \phi_2=\pi[/mm] , [mm]\phi_{2k}=\bruch{\pi^k}{k!}, \phi_{n+2}=\bruch{2\pi}{n+2}\phi_n[/mm]
>
du brauchst denke ich nur die formel fuer integration von rotationssymmetrischen funktionen. Spezialfall hier
[mm] $\int_{B_R(0)}\, d\lambda_n=n\tau_n \int_0^R r^{n-1}\,dr$
[/mm]
fuer kugeln im [mm] $R^n$, $\tau_n$ [/mm] volumen der n-dim. einheitskugel.
ich wuerde nun zwei verschiedene r's definieren
[mm] $r_1=\sqrt{x_1^2+.......+x_m^2}$ [/mm] und
[mm] $r_2=\sqrt{x_{m+1}^2+......+x_n^2}$
[/mm]
dann laeuft das aeussere integral ueber [mm] $r_2$ [/mm] und das innere ueber [mm] $r_1$. [/mm] du musst dir noch die grenzen ueberlegen und obige formel anwenden, dann bist schon fast fertig!
gruss
matthias
|
|
|
|