n-facher Münzwurf < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 16:02 Fr 19.11.2010 | Autor: | jens.fiedler |
Aufgabe | Es sei n€N, n>=3. Eine ideale Münze mit den Prägungen Kopf und Zahl werde so oft geworfen, bis dreimal nacheinander Zahl erscheint, höchstens aber n-mal. Es interessiert der Zeitpunkt des Abbruchs.
i) Modellieren Sie die Situation durch eine Bernoulli-Kette der Länge n. Stellen sie für k€{3,....,n} das Ereignis
[mm] (Ak)^n [/mm] : Das Spiel endet nach genau K würfen als Menge dar und berechnen sie die WK. |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich brauche hilfe, da ich nicht weiss wie ich es anstelle die würfe in abbhängigkeit zu stellen also wenn es darum gehen würde das insgesamt 3 mal Zahl erscheint wüsste ich wie es geht aber wie modelliere ich 3 mal hintereinander zahl ?????
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:30 Fr 19.11.2010 | Autor: | Walde |
Hi Jens,
man soll ja das Ereignis [mm] A_k^n [/mm] betrachten, man fängt am besten mal mit k=3 an, arbeitet sich dann ein paar k's nach oben und kuckt, ob man eine Regelmässigkeit erkennt.
Vorneweg: [mm] P(A_k^n)=0, [/mm] falls n<k, das Spiel ist spätestens nach n Würfen zuende, k kann nicht grösser als n sein.
Also [mm] A_3^n=\{(Z,Z,Z)\} [/mm] Das Spiel ist nach genau 3 Würfen zuende, wenn genau Zahl,Zahl,Zahl =(Z,Z,Z) kommt. [mm] P(A_3^n)=0,5^3. [/mm]
Ok, das war leicht.
Für k=4,n>4
[mm] A_4^n=\{(K,Z,Z,Z)\} [/mm] mit [mm] P(A_4^n)=0,5^4.
[/mm]
Falls n=4, ist das Spiel nach 4 Würfen immer zuende, es sei denn es war schon vorher zuende:
[mm] A_4^4=\Omega\setminus\{(Z,Z,Z)\} [/mm] mit [mm] P(A_4^4)=1-0,5^3.
[/mm]
k=5,n>5
[mm] A_5^n=\{(KKZZZ),(ZKZZZ)\} [/mm] mit [mm] P(A_5^n)=2*0,5^5
[/mm]
n=5
Falls n=5, ist das Spiel nach 5 Würfen immer zuende, es sei denn es war schon im 3. oder 4. Zug zuende:
[mm] A_5^5=\Omega\setminus(\{(Z,Z,Z)\}\cup\{(K,Z,Z,Z)\}) [/mm] mit [mm] P(A_5^5)=1-(0,5^3+0,5^4)
[/mm]
Hier kann man schon einen Trend erkennen.
Bei der Betrachtung der Ergebnisse, die in [mm] A_k^n [/mm] liegen, müssen die letzten Einträge immer [mm] (\cdots,K,Z,Z,Z) [/mm] lauten (falls n>k) und es dürfen vorher maximal zwei Z nebeneinander stehen. Das heisst, es fallen die Kombinationen raus, die im linken Teil (vor dem KZZZ) einen 3er (oder mehr) Z Block enthalten.(Das wird erst relevant bei [mm] k\ge7). [/mm] Mir fällt auf die schnelle auch nicht ein, wie man das formelmässig ausdrückt, aber wie gesagt:schreib dir mal die ersten hin, dann erkennt man vielleicht was.
LG walde
|
|
|
|