"n über k"-Rechnung < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 14:41 Mo 15.10.2007 | Autor: | Amy1988 |
Aufgabe | Aus den natürliche
n Zahlen von 1 bis 100 werden zufällig 3 ausgewählt. Wie groß ist die Wahrscheinlichkeit, dass man da bei
a) 3 Primzahlen
b) 3 gerade Zahlen
c) 3 Fünferzahlen
d) 3 einstellige Zahlen
e) genau 2 einstellige Zahlen
erhält?
|
Hallo ihr Lieben!
Zuallererst einmal die Frage, was sind "Fünferzahlen"? (siehe Aufgabenbereich e)
So...ich bereite mich jetzt gerade ein wenig auf eine Matheklausur vor und habe unter anderem diese Aufgabe zum Üben gewählt.
Mein Problem ist, dass mir ein konkreter Ansatz fehlt.
Ich habe mir jetzt überlegt, dass es dich wieder darum geht, die günstigen durch die möglichen Kombinationen zu teilen-also n über k.
Wenn ich jetzt die möglichen ausrechnen wollte, dann würde ich das, für die Aufgaben a-e mit 100 aus 3 errechnen, was dann regäbe, dass es 161700 Kombinationne gäbe.
Ich würde jetzt, keine Ahnung, ob das so richtig ist, zählen, wie viele Primzahlen, bzw ungerade Zahlen usw. in der Zahlenfolge von 1 bis 100 vorkommen und dann würde ich die so erhaltene Zahl über 3 setzen...Ist das so verständlich?
Und vor allem...macht man das so? Denn das würde ja schon ein wenig Zeitaufwand sein, das zu zählen und so weiter...
Und wie ginge es dann bei Aufgabe e???
Ich wäre dankbar, wenn mir jemand mal helfen könnte!!!
LG, Amy
|
|
|
|
Hallo Amy1988,
> Aus den natürliche
> n Zahlen von 1 bis 100 werden zufällig 3 ausgewählt. Wie
> groß ist die Wahrscheinlichkeit, dass man da bei
> a) 3 Primzahlen
> b) 3 gerade Zahlen
> c) 3 Fünferzahlen
> d) 3 einstellige Zahlen
> e) genau 2 einstellige Zahlen
> erhält?
>
> Hallo ihr Lieben!
>
> Zuallererst einmal die Frage, was sind "Fünferzahlen"?
> (siehe Aufgabenbereich e)
das sind wohl die durch 5 teilbaren Zahlen, denke ich.
>
> So...ich bereite mich jetzt gerade ein wenig auf eine
> Matheklausur vor und habe unter anderem diese Aufgabe zum
> Üben gewählt.
> Mein Problem ist, dass mir ein konkreter Ansatz fehlt.
> Ich habe mir jetzt überlegt, dass es dich wieder darum
> geht, die günstigen durch die möglichen Kombinationen zu
> teilen-also n über k.
> Wenn ich jetzt die möglichen ausrechnen wollte, dann würde
> ich das, für die Aufgaben a-e mit 100 aus 3 errechnen, was
> dann regäbe, dass es 161700 Kombinationne gäbe.
> Ich würde jetzt, keine Ahnung, ob das so richtig ist,
> zählen, wie viele Primzahlen, bzw ungerade Zahlen usw. in
> der Zahlenfolge von 1 bis 100 vorkommen und dann würde ich
> die so erhaltene Zahl über 3 setzen...Ist das so
> verständlich?
> Und vor allem...macht man das so? Denn das würde ja schon
> ein wenig Zeitaufwand sein, das zu zählen und so weiter...
> Und wie ginge es dann bei Aufgabe e???
MathePrisma
Gruß informix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:04 Mo 15.10.2007 | Autor: | Amy1988 |
Danke erstmal für die Information mit den Fünferzahlen und natürlich auch für den Link.
Ich habe dort aber auch zuvor schonmal ein bisschen gelesen, muss aber sagen, dass mir das nicht sooo weitergeholfen hat :o(
Tut mir Leid...
Denkst, du dass mein Ansatz schon stimmt oder bin ich auf dem falschen Weg?
LG, Amy
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:30 Mo 15.10.2007 | Autor: | statler |
Hallo Amy!
> Denkst, du dass mein Ansatz schon stimmt oder bin ich auf
> dem falschen Weg?
Du bist durchaus auf dem richtigen Weg, jedenfalls bei a) bis d). Das sind einfache Fälle der hypergeometrischen Verteilung; e) ist etwas komplizierter. Vielleicht überlegst du dir, wie viele Möglichkeiten du für die mehrstellige Zahl hast, wenn du 2 einstellige Zahlen gezogen hast, und wie du dann erst die Zahl aller Mgl. mit diesen 2 einstelligen Zahlen berechnest und schließlich die zahl aller Mögl. überhaupt.
Gruß aus HH-Harburg
Dieter
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:04 Mo 15.10.2007 | Autor: | Amy1988 |
Also...
ich habe jetzt mal versucht, mit meinen Rechenansätzen weiterzumachen und bin auf folgende Ergebnisse gekommen:
a)
Hier gibt es meiner Meinung nach 25 Primzahlen also habe ich
[mm] \bruch{\vektor{25 \\ 3}}{\vektor{100 \\ 3}} [/mm] = [mm] \bruch{2300}{161700} [/mm] = 0,01
gerechnet.
b)
Hier gibt es 50 gerade Zahlen, woraus ich gefolgert habe:
[mm] \bruch{\vektor{50 \\ 3}}{\vektor{100 \\ 3}} [/mm] = [mm] \bruch{19600}{161700} [/mm] = 0,12
c)
Es gibt 20 durch 5 teilbare Zahlen, also:
[mm] \bruch{\vektor{20 \\ 3}}{\vektor{100 \\ 3}} [/mm] = [mm] \bruch{1140}{161700} [/mm] = [mm] 7,05*10^{-3}
[/mm]
d)
Hier komme ich auf 9 einstellige Zahlen
[mm] \bruch{\vektor{9 \\ 3}}{\vektor{100 \\ 3}} [/mm] = [mm] \bruch{84}{161700} [/mm] = [mm] 5,19*10^{-4}
[/mm]
e)
Hier habe ich mir jetzt folgendes ünberlegt
[mm] \bruch{\vektor{3 \\ 2}*\vektor{88 \\ 1}}{\vektor{100 \\ 3}} [/mm] = [mm] \bruch{264}{161700} [/mm] = [mm] 1,63*10^{-3}
[/mm]
Stimmt das so einigermaßen?
Vielen Dank, Amy
|
|
|
|
|
Hallo Amy1988,
> Also...
> ich habe jetzt mal versucht, mit meinen Rechenansätzen
> weiterzumachen und bin auf folgende Ergebnisse gekommen:
> a)
> Hier gibt es meiner Meinung nach 25 Primzahlen also habe
> ich
>
> [mm]\bruch{\vektor{25 \\ 3}}{\vektor{100 \\ 3}}[/mm] =
> [mm]\bruch{2300}{161700}[/mm] = 0,01
>
> gerechnet.
>
> b)
> Hier gibt es 50 gerade Zahlen, woraus ich gefolgert habe:
>
> [mm]\bruch{\vektor{50 \\ 3}}{\vektor{100 \\ 3}}[/mm] =
> [mm]\bruch{19600}{161700}[/mm] = 0,12
>
> c)
> Es gibt 20 durch 5 teilbare Zahlen, also:
>
> [mm]\bruch{\vektor{20 \\ 3}}{\vektor{100 \\ 3}}[/mm] =
> [mm]\bruch{1140}{161700}[/mm] = [mm]7,05*10^{-3}[/mm]
>
> d)
> Hier komme ich auf 9 einstellige Zahlen
>
> [mm]\bruch{\vektor{9 \\ 3}}{\vektor{100 \\ 3}}[/mm] =
> [mm]\bruch{84}{161700}[/mm] = [mm]5,19*10^{-4}[/mm]
bis hierher ist wohl alles
>
> e)
> Hier habe ich mir jetzt folgendes ünberlegt
>
Es gibt doch 9 einstellige Zahlen, aus denen du zwei wählen kannst, und dann noch 90 zwei- und 1 dreistellige, aus denen du noch eine wählen kannst!
> [mm]\bruch{\vektor{3 \\ 2}*\vektor{88 \\ 1}}{\vektor{100 \\ 3}}[/mm]
> = [mm]\bruch{264}{161700}[/mm] = [mm]1,63*10^{-3}[/mm]
>
> Stimmt das so einigermaßen?
>
> Vielen Dank, Amy
Gruß informix
|
|
|
|