www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Trigonometrische Funktionen" - nach x auflösen
nach x auflösen < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nach x auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:48 Sa 03.03.2007
Autor: ahhhnd

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
ich habe die zwei funktionen f unf g gleichgesetzt:
[mm] x^{2}=4cosx [/mm]
wie kann ich jetz nach x auflösen? im schabild sehe ich, dass es ca 1,22 sien muss aber wie kann man es genau ausrechnen?

        
Bezug
nach x auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:33 Sa 03.03.2007
Autor: Zwerglein

Hi, ahhhnd,

>  ich habe die zwei funktionen f unf g gleichgesetzt:
>  [mm]x^{2}=4cosx[/mm]
>  wie kann ich jetz nach x auflösen? im schaubild sehe ich,
> dass es ca 1,22 sein muss aber wie kann man es genau
> ausrechnen?

Gar nicht!
Du kannst die Schnittstelle nur über ein Näherungsverfahren ermitteln.
Ich schlage das Newton-Verfahren vor!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]