www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - nach x auflösen
nach x auflösen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nach x auflösen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:31 Do 16.09.2010
Autor: Polynom

[mm] 0,5x+2=L1x^2-4 [/mm]
Jetzt soll ich nach x auflösen, aber ich komme gerade nicht weiter wie mache ich das? Es soll aber x= [mm] -\bruch{1}{L1} [/mm] raus kommen.
Danke für jede Antwort!

        
Bezug
nach x auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Do 16.09.2010
Autor: Blech

Hi,

> [mm]0,5x+2=L1x^2-4[/mm]
>  Jetzt soll ich nach x auflösen, aber ich komme gerade
> nicht weiter wie mache ich das? Es soll aber x=

es kommt einmal x und einmal [mm] x^2 [/mm] vor. Die Lösungsformel für quadratische Gleichungen bietet sich also an.


EDIT: Btw., setz mal Deine angegebene Lösung ein. Du wirst sehen, daß sie für ein allgemeines [mm] $L_1$ [/mm] nicht stimmen kann. Nur wenn [mm] $L_1$ [/mm] einen bestimmten Wert hat, und Du den auch kennst, kommt das raus.

ciao
Stefan

Bezug
                
Bezug
nach x auflösen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:38 Do 16.09.2010
Autor: Polynom

hallo,
wenn ich aber die p/q Formel anwende dann bekomme ich was ganz anderes heraus, dann fällt L1 weg oder?
Vielen Dank für eure Antworten!

Bezug
                        
Bezug
nach x auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Do 16.09.2010
Autor: Blech

Hi,

da war meine Ergänzung zu langsam. =)

[mm] $\frac{-1}{L_1}$ [/mm] ist definitiv nicht das, was bei der Lösungsformel rauskommt. Es gilt nur [mm] $x=\frac{-1}{L_1}$ [/mm] für ein spezielles [mm] $L_1$. [/mm]

ciao
Stefan

Bezug
                                
Bezug
nach x auflösen: Korrektur
Status: (Frage) beantwortet Status 
Datum: 22:46 Do 16.09.2010
Autor: Polynom

Hallo,
wenn ich x= [mm] -\bruch{1}{L1} [/mm] in die gleichgesetzte gleichung für x einsetzte dann bekomme ich für L1= [mm] \bruch{1}{4} [/mm] raus. Aber wie komme ich von der gleichgesetzten Gleichung auf x= [mm] -\bruch{1}{L1}? [/mm]
Vielen Dank für eure Antworten!

Bezug
                                        
Bezug
nach x auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:54 Do 16.09.2010
Autor: Blech

Hi,

>  wenn ich x= [mm]-\bruch{1}{L1}[/mm] in die gleichgesetzte gleichung
> für x einsetzte dann bekomme ich für L1= [mm]\bruch{1}{4}[/mm]
> raus. Aber wie komme ich von der gleichgesetzten Gleichung
> auf x= [mm]-\bruch{1}{L1}?[/mm]

überhaupt nicht.

Nur wenn Du vorher weißt, daß [mm] $L_1=\frac14$ [/mm] kannst Du dann ausrechnen, daß [mm] $x=-\frac1{L_1}$ [/mm] (d.h. x=-4 -- übrigens ist x=6 dann auch eine Lösung).

Entweder hat die Aufgabe einen Teil, den Du nicht erwähnt hast (d.h. z.B. andere Formulierung: "wenn [mm] $\frac{-1}{L_1}$ [/mm] die Gleichung löst, was ist dann [mm] $L_1$?"), [/mm] oder Du hast Dich vorher schon verrechnet, oder die angegebene Lösung ist einfach falsch.

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]