www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - natürliche Exponentialfunktion
natürliche Exponentialfunktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

natürliche Exponentialfunktion: Überprüfung + Hinweis bitte
Status: (Frage) beantwortet Status 
Datum: 21:37 So 12.11.2006
Autor: Blaub33r3

Aufgabe
a) Gegeben ist der Graph K der natürlichen Exponentialfunktion f = [mm] e^{x}. [/mm]
In einem Punkt P(a/f(a)) wird die Tangente an K gelegt. Berechnen Sie die Koordinaten des Schnittpunktes Q dieser Tangente mit der x-Achse.

b) Vergleichen Sie die x-Werte der Punkte P und Q. Wie kann man also in einem gegebenen Punkt die Tangente an K konstruieren?

Moin Moin Jungs^^

Also a) hab ich wie folgt gelöst


wir haben folgendes :
P ( a / [mm] e^{a}) [/mm]  und die Steigung im Punkt a ist ja genau wie der Funktionwert an der Stelle a ---> also [mm] e^{a} [/mm]

y = mx + b

also :  [mm] e^{a} [/mm] = [mm] e^{a} [/mm] *a + b

Tangentengleichung nach b umgestellt ;)

b = - [mm] e^{a} [/mm] * (a-1)

und dann in die Tangentengleichungen wieder eingesetzt y=0 gesetzt und nach x umgestellt...


y = [mm] e^{a} [/mm] * x - [mm] e^{a} [/mm] (a-1)

Nach x umgestellt :
x = a-1

ist das soweit richtig??? hoffentlich...naja aufjedenfall kann mir einer b vllt erklären? *G*

Schönen Abend noch, und thx!!

gruss b33r3

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
natürliche Exponentialfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 So 12.11.2006
Autor: Walde

hi,

sieht alles soweit richtig aus.

zu b) verlgeich doch mal die x-werte der Punkte P und Q:
P(a|f(a))
Q(a-1|0)

Einmal x-Wert a und einmal a-1.

Wenn du also die Tangente an einen beliebigen Punkt von f konstruieren sollst, verbindest du einfach den Punkt (den du vorgegeben hast) mit dem Punkt, der auf der x-Achse liegt und die x-Koordinate eins weniger als der vorgegeben Punkt hat und fertig ist die Tangente.


L G walde

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]