www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - normalapproximation
normalapproximation < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

normalapproximation: fehlersuche
Status: (Frage) beantwortet Status 
Datum: 17:17 Do 11.06.2009
Autor: suzan_7

Aufgabe
Wie groß ist approximativ die Wahrscheinlichkeit mit einem Laplacewürfel bei 600 Würfen wenigstens 90 mal höchstens 110 mal eine Sechs zu werfen?

Also ich habe versucht die Aufgabe analog zur Vorlesung in der Uni zu lösen, hab aber irgendwo einen Fehler
also E(x)= np= 100
VarX= npq = 500/6

P({w/ [mm] \parallel X(w)-100\parallel \le [/mm] 10})
so nun muss ich doch die ungleichung in der Klammer auf beiden seiten durch (Standardabweichung/Wurzel "n") dividieren oder?
Dann komm ich darauf dass der Betrag [mm] \le [/mm] 26,83 sein muss.
dieser wert ist jedoch in keiner tabelle zu finden. (bzw ist dann 1 oder?)
aber das hilft mir nicht weiter....

wo liegt das problem?

        
Bezug
normalapproximation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:28 Do 11.06.2009
Autor: luis52

Moin suzan7,

du rechnest mit dem Modell der Bernoulli-Verteilung mit [mm] $\operatorname{E}[X]=p$ [/mm] und [mm] $\operatorname{Var}[X]=p(1-p)$. [/mm] (Was ist $p_$?) Tatsaechlich liegt aber eine diskrete Gleichverteilung vor mit [mm] $\operatorname{E}[X]=3.5$ [/mm] und
[mm] $\operatorname{Var}[X]=35/12$. [/mm]

vg Luis  

Bezug
                
Bezug
normalapproximation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Do 11.06.2009
Autor: suzan_7

Ich habe eigentlich mit der Binomialverteilung gerechnet
Warum habe ich hier eine gleichverteilung
und wie kommst du auf diese varianz??

Langsam versteh ich in stochastik garnichtsmehr...

Bezug
                        
Bezug
normalapproximation: Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 Do 11.06.2009
Autor: luis52


> Ich habe eigentlich mit der Binomialverteilung gerechnet

Das habe ich gesehen. Ist aber [notok]

>  Warum habe ich hier eine gleichverteilung
> und wie kommst du auf diese varianz??

[]Da schau her.

>  
> Langsam versteh ich in stochastik garnichtsmehr...

Kopf hoch! Hier werden Sie geholfen. ;-)

vg Luis


Bezug
                                
Bezug
normalapproximation: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 20:44 Do 11.06.2009
Autor: suzan_7

Ok, dann betrachtet man das Würfel geworfen wird und berechnet dafür Erwartungswert und Varianz und macht daraus ein zusammengesetzes Zufallsexperiment...
leuchtet schon irgendwie ein.
aber ist das nciht wahnsinnig umstämdlich?

Weshalb ist die binimialverteilung denn so schlecht bei dieser aufgabe.
ist es denn nicht genau geeignet. da ich mit tschebyscheff, gesetz der gr. zahlen ... eben eine approximation mit der NVT durchführen kann...

Bezug
                                        
Bezug
normalapproximation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:50 Do 11.06.2009
Autor: luis52

Moin [mm] suzan_7, [/mm]

du offenbarst leider zu grosse Wissensluecken. Ich fuerchte,
du musst erst noch ein paar (Hoch-)Schularbeiten erledigen.
Ich kann dir nicht helfen.

vg Luis

Bezug
                                        
Bezug
normalapproximation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Sa 13.06.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]