obere Grenze des Summenzeichen < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:06 Mo 08.11.2010 | Autor: | Benja91 |
Ich habe diese Frage in keinem anderen Forum gestellt:
Hallo,
ich habe den Induktionsbeweis an sich zwar verstanden, bei einer Aufgabe habe ich so allerdings meine Probleme. Um die Induktionsvoraussetzung einsetzen zu können muss ich
[mm] \summe_{i=1}^{2n+1} (-1)^{k-1}*k^{2} [/mm] zu [mm] \summe_{i=1}^{2n-1} (-1)^{k-1}*k^{2} [/mm] umwandeln. Wir haben in der Schule dann einmal 2n und 2n-1 rausgezogen. Allerdings habe ich nicht wirklich verstanden, warum ich dann genau die gewünschte Summe erhalte. Vielleicht kann es mir von euch jemand besser erklären :)
Vielen Dank und lg
Benja
|
|
|
|
Hallo Benja91,
> Ich habe diese Frage in keinem anderen Forum gestellt:
>
> Hallo,
>
> ich habe den Induktionsbeweis an sich zwar verstanden, bei
> einer Aufgabe habe ich so allerdings meine Probleme. Um die
> Induktionsvoraussetzung einsetzen zu können muss ich
> [mm]\summe_{i=1}^{2n+1} (-1)^{k-1}*k^{2}[/mm] zu [mm]\summe_{i=1}^{2n-1} (-1)^{k-1}*k^{2}[/mm]
Achtung, der Summationsindex muss [mm]\red{k}[/mm] lauten, nicht i !
> umwandeln. Wir haben in der Schule dann einmal 2n und 2n-1
> rausgezogen.
Naja, ihr habt die beiden Summanden für [mm]\red{k=2n}[/mm] und [mm]\blue{k=2n+1}[/mm] herausgezogen, also [mm](-1)^{\red{2n}-1}\cdot{}\red{(2n)^2}[/mm] und [mm](-1)^{\blue{2n+1}-1}\cdot{}\blue{(2n+1)^2}[/mm]
Dass du 2 Summanden rausziehen musst, ist klar?
Du hast in der IV für bel., aber festes [mm]n\in\IN[/mm] die Aussage [mm]\sum\limits_{k=1}^{2n-1}(-1)^{k-1}k^2=\ldots[/mm] (das hast du uns vorenthalten)
Dann ist zu zeigen, dass unter dieser Voraussetzung die Beh. auch für [mm]\green{n+1}[/mm] gilt, dass also [mm]\sum\limits_{k=1}^{2\green{(n+1)}-1}(-1)^{k-1}k^2=\sum\limits_{k=1}^{2n+1}(-1)^{k-1}k^2=\ldots[/mm] gilt.
Diese Summe hat im Vergleich zu der Summe in der IV 2 Summanden mehr, den für [mm]k=2n[/mm] und den für [mm]k=2n+1[/mm] (siehe weiter oben)
> Allerdings habe ich nicht wirklich verstanden,
> warum ich dann genau die gewünschte Summe erhalte.
Was genau meinst du?
Du solltest mal die zu zeigende Beh. formulieren!
Du ziehst die Summe auseinander, um auf die verbliebende Summe von [mm]k=2n[/mm] bis [mm]k=2n-1[/mm] die Induktionsvoraussetzung anwenden zu können.
Du ersetzt diese Summe also durch den Ausdruck ... in der IV.
Dazu addierst du die beiden Summanden für [mm]k=2n[/mm] und [mm]k=2n+1[/mm] (siehe oben) und modelst alles zusammen, bis du die gewünschte rechte Seite ... dastehen hast (die du uns vorenthalten hast) ...
> Vielleicht kann es mir von euch jemand besser erklären :)
>
> Vielen Dank und lg
> Benja
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:48 Mi 01.12.2010 | Autor: | Benja91 |
Hallo,
es tut mir Leid, dass ich mich erst so spät melde. Ich glaube ich habe mein Problem nicht genau beschrieben. Die Induktion ist mir klar. Ich verstehe aber nicht, warum ich zwei Summanden herausziehen muss.
Zitat:
Naja, ihr habt die beiden Summanden für [mm]\red{k=2n}[/mm] und [mm]\blue{k=2n+1}[/mm] herausgezogen, also [mm](-1)^{\red{2n}-1}\cdot{}\red{(2n)^2}[/mm] und [mm](-1)^{\blue{2n+1}-1}\cdot{}\blue{(2n+1)^2}[/mm]
Zitat Ende
Es wäre schön, wenn ihr mir helfen könntet.
Liebe Grüße
Benja
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:02 Mi 01.12.2010 | Autor: | abakus |
> Hallo,
>
> es tut mir Leid, dass ich mich erst so spät melde. Ich
> glaube ich habe mein Problem nicht genau beschrieben. Die
> Induktion ist mir klar. Ich verstehe aber nicht, warum ich
> zwei Summanden herausziehen muss.
Und woher sollen wir das wissen? Du hast uns ja nun wirklich nur diese beiden Summen genannt. Der Zusammenhang mit der uns unbekannten Aufgabenstellung (die Bemerkung "ein Induktionsbeweis" ist ja wohl etwas dürftig) fehlt.
Aber ich glaube, ich kann dir trotzdem antworten:
Man hat es sicher gemacht, weil das für die Bewältigung der Aufgabe vorteilhaft war. Sicher hat man gerade die Summe gebraucht, in der die beiden letzten Summanden nicht mit drin stehen.
Gruß Abakus
>
> Zitat:
> Naja, ihr habt die beiden Summanden für [mm]\red{k=2n}[/mm] und
> [mm]\blue{k=2n+1}[/mm] herausgezogen, also
> [mm](-1)^{\red{2n}-1}\cdot{}\red{(2n)^2}[/mm] und
> [mm](-1)^{\blue{2n+1}-1}\cdot{}\blue{(2n+1)^2}[/mm]
> Zitat Ende
>
> Es wäre schön, wenn ihr mir helfen könntet.
>
> Liebe Grüße
> Benja
>
>
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 11:47 Fr 03.12.2010 | Autor: | Benja91 |
Hallo,
danke für deine Antwort. Es geht mir gar nicht um den Induktionsbeweis. Ich verstehe grundsätzlich nicht wie ich von einer Summe mit [mm] \summe_{i=1}^{2n+1} [/mm] zu einer Summe mit [mm] \summe_{i=1}^{2n-1} [/mm] komme. Ich muss ja irgendetwas aus der Summe ziehen, aber ich habe nicht verstanden was und wie das genau funktioniert.
Entschuldigung für meine vorher zu ungenaue Fragestellung.
Liebe Grüße
Benja
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:51 Fr 03.12.2010 | Autor: | Loddar |
Hallo Benja!
Zur Veranschaulichung, schreibe Dir den Term [mm]2n-1_[/mm] und alle darauffolgenden Terme auf bis Du [mm]2n+1_[/mm] erhältst:
[mm]2n-1 \ \rightarrow \ 2n \ \rightarrow \ 2n+1[/mm]
Damit sollte nun klar sein, dass Du hier die beiden Summenterme für [mm]2n_[/mm] bzw. [mm]2n+1_[/mm] seperat betrachten musst.
Gruß
Loddar
|
|
|
|