www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - orthogonale kurvenschar bestim
orthogonale kurvenschar bestim < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

orthogonale kurvenschar bestim: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:42 So 20.02.2011
Autor: hamma

Hallo, ich habe die orthogonale kurvenschar folgender funktion berechnet:

y+xy=c

jetzt weis ich nicht ob meine rechenwege so stimmen, es wäre sehr nett wenn ihr mal drüber schauen könnt auf korrektheit.

die aufgabe lautet:
bestimmen Sie die orthogonaJe kurvenschar (die orthogonalen trajektorien) zu dieser kurvenschar.

y+xy=c

mein rechenweg:

y'+y+xy'=0

[mm] y'=\bruch{-y}{1+x} [/mm]

jetzt soll man [mm] y'=-\bruch{1}{y'} [/mm] setzen:

[mm] -\bruch{1}{y'}=\bruch{-y}{1+x} [/mm]

y'= [mm] \bruch{1+x}{y} [/mm]


[mm] \bruch{dy}{dx}=\bruch{1+x}{y} [/mm]


[mm] \integral_{}^{}{y dy}+\integral_{}^{}{1+x dx} [/mm]


[mm] \bruch{1}{2}y^2=x+\bruch{1}{2}x^2+c [/mm]

[mm] y=\wurzel{2x(1+\bruch{1}{2}x)+c} [/mm]

jetzt soll ich noch aus der menge der allgemeinen lösungen diejenige lösung, die durch den punkt (3,5) geht (AWP =Anfangswenproblem) bestimmen.

soll ich hier die punkte (3,5) in meine berechnete allgemeine lösung einsetzten und  dann nach c auflösen? ich weiß nicht so recht wie ich hier vorgehen soll.

gruß hamma
















        
Bezug
orthogonale kurvenschar bestim: Antwort
Status: (Antwort) fertig Status 
Datum: 13:01 So 20.02.2011
Autor: MathePower

Hallo hamma,

> Hallo, ich habe die orthogonale kurvenschar folgender
> funktion berechnet:
>  
> y+xy=c
>  
> jetzt weis ich nicht ob meine rechenwege so stimmen, es
> wäre sehr nett wenn ihr mal drüber schauen könnt auf
> korrektheit.
>  
> die aufgabe lautet:
>  bestimmen Sie die orthogonaJe kurvenschar (die
> orthogonalen trajektorien) zu dieser kurvenschar.
>  
> y+xy=c
>  
> mein rechenweg:
>  
> y'+y+xy'=0
>  
> [mm]y'=\bruch{-y}{1+x}[/mm]
>  
> jetzt soll man [mm]y'=-\bruch{1}{y'}[/mm] setzen:
>  
> [mm]-\bruch{1}{y'}=\bruch{-y}{1+x}[/mm]
>  
> y'= [mm]\bruch{1+x}{y}[/mm]
>  
>
> [mm]\bruch{dy}{dx}=\bruch{1+x}{y}[/mm]
>  
>
> [mm]\integral_{}^{}{y dy}+\integral_{}^{}{1+x dx}[/mm]
>  
>
> [mm]\bruch{1}{2}y^2=x+\bruch{1}{2}x^2+c[/mm]


[ok]


>  
> [mm]y=\wurzel{2x(1+\bruch{1}{2}x)+c}[/mm]
>  
> jetzt soll ich noch aus der menge der allgemeinen lösungen
> diejenige lösung, die durch den punkt (3,5) geht (AWP
> =Anfangswenproblem) bestimmen.
>  
> soll ich hier die punkte (3,5) in meine berechnete
> allgemeine lösung einsetzten und  dann nach c auflösen?


Ja.


> ich weiß nicht so recht wie ich hier vorgehen soll.
>  
> gruß hamma
>  


Gruss
MathePower

Bezug
        
Bezug
orthogonale kurvenschar bestim: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:15 So 20.02.2011
Autor: Al-Chwarizmi


> gegebene Kurvenschar :

> y+xy=c

>  bestimmen Sie die orthogonale kurvenschar (die
> orthogonalen trajektorien) zu dieser kurvenschar.
>  
> y+xy=c
>  
> mein rechenweg:
>  
> y'+y+xy'=0
>  
> [mm]y'=\bruch{-y}{1+x}[/mm]
>  
> jetzt soll man [mm]y'=-\bruch{1}{y'}[/mm] setzen:    [haee]

   (dies würde auf y'=i oder y'=-i führen, oder ?)

Hier musst du unbedingt auch bei den Bezeichnungen
zum Ausdruck bringen, dass jetzt aus der DGL der
gegebenen Schar die DGL für eine neue Schar
gemacht werden soll. Etwa so:

    [mm]y_{neu}'\ =\ -\bruch{1}{y'_{alt}}[/mm]  

> [mm]-\bruch{1}{y'}=\bruch{-y}{1+x}[/mm]

> ......

LG   Al-Chw.


Bezug
                
Bezug
orthogonale kurvenschar bestim: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:36 So 20.02.2011
Autor: hamma

ok, danke fürs drüberschauen und was ich besser machen könnte.

gruß hamma

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]