www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - parallele Tangenten
parallele Tangenten < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

parallele Tangenten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Di 24.10.2006
Autor: Urd82

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich zerbreche mir schon seit Tagen den Kopf über eine Aufgabe, hoffe ihr könnt mir ein bisschen Hilfestellung geben

Bestimmen Sie die Stellen, an denen die Graphen der Funktion
f(x)=-2x³ und g(x)=5x²+16x  parallele Tangenten besitzen.

MEINE Idee war jetzt, wenn sie parallel sind, ist die Steigung ja gleich, aber wenn ich die 1. Ableitung nehme und dann beide gleich setze, spuckt der Taschenrechner mir das ERROR um die Ohren. Und Stellen sind doch immer x-Werte oder nicht?
Bitte bitte,..das ist mein erstes Posting hier und ich hoffe ihr könnt mir helfen.
lg und danke schon mal
urd

        
Bezug
parallele Tangenten: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Di 24.10.2006
Autor: M.Rex


> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Ich zerbreche mir schon seit Tagen den Kopf über eine
> Aufgabe, hoffe ihr könnt mir ein bisschen Hilfestellung
> geben
>  
> Bestimmen Sie die Stellen, an denen die Graphen der
> Funktion
>  f(x)=-2x³ und g(x)=5x²+16x  parallele Tangenten besitzen.
>  
> MEINE Idee war jetzt, wenn sie parallel sind, ist die
> Steigung ja gleich, aber wenn ich die 1. Ableitung nehme
> und dann beide gleich setze, spuckt der Taschenrechner mir
> das ERROR um die Ohren. Und Stellen sind doch immer x-Werte
> oder nicht?
>  Bitte bitte,..das ist mein erstes Posting hier und ich
> hoffe ihr könnt mir helfen.
>  lg und danke schon mal
> urd

Hallo und [willkommenmr]

Die Idee ist korrekt.

Also f(x)=2x³, g(x)=5x²+16x
Das heisst, [mm] f'(x)=6x^\red{{2}}, [/mm] g'(x)=10x+16
[edit: ergänzter Exponent. informix]

Also
6x²=10x+16
[mm] \gdw [/mm] x²-10x-16
[mm] \Rightarrow x_{1;2}=5\pm\wurzel{25-16}=2\pm3 [/mm]

Marius

Bezug
                
Bezug
parallele Tangenten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:31 Di 24.10.2006
Autor: Teufel

Hallo!
Aber f(x)=-2x³. Ich habe übrigens auch raus, dass die Anstiege nie an einer Stelle gleich sind.

Bezug
                
Bezug
parallele Tangenten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:34 Di 24.10.2006
Autor: Lueger


>  6x²=10x+16
>  [mm]\gdw[/mm] x²-10x-16
>  [mm]\Rightarrow x_{1;2}=5\pm\wurzel{25-16}=2\pm3[/mm]

Hi

der Umformung kann ich nicht so ganz folgen....

und auch die Ableitung bzw der Grundterm entspricht nicht der Angabe!!!

$f(x) = [mm] -2x^3 [/mm] $!

> Also f(x)=2x³, g(x)=5x²+16x
> Das heisst, f'(x)=6x, g'(x)=10x+16


Meiner Meinnung gibt es keine Lösung

denn

[mm] $-6x^2=10x+16$ [/mm]
=> $0 = [mm] 6x^2+10x [/mm] + 16$

ist eine nachobengeöffnete Parabel (y-achse = + 16)
also keine Lsg im R

Gruß Lueger

Bezug
                
Bezug
parallele Tangenten: Korrekturmitteilung
Status: (Korrektur) Korrekturmitteilung Status 
Datum: 17:35 Di 24.10.2006
Autor: Lueger

siehe meine Mittteilung!!!

Grüße
Lueger

Bezug
        
Bezug
parallele Tangenten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:13 Di 24.10.2006
Autor: Urd82

bin jetzt noch verwirrter,....aber danke für eure mühe

Bezug
                
Bezug
parallele Tangenten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:30 Di 24.10.2006
Autor: Teufel

Deine Idee war schon richtig! Undw enn du das so durchziehst, dann kommt man wirklich drauf, dass sie nie den gleichen Anstieg an einer Stelle haben.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]