permutationen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:05 So 27.11.2005 | Autor: | bobby |
Hallo!
Ich habe folgende Aufgabe auf und hab schon ein paar Sachen dazu gerechnet, vielleicht kann mal jemand gucken, ob das soweit richtig ist.
Ich hab zwei Permutationen gegeben:
[mm] a=\pmat{ 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 4 & 7 & 1 & 2 & 6 & 3 }
[/mm]
[mm] b=\pmat{ 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 3 & 4 & 2 & 1 }
[/mm]
Jetzt sollte ich a [mm] \circ b^{-1} [/mm] berechnen, da ist meine Lösung:
a [mm] \circ b^{-1} [/mm] = [mm] \pmat{ 7 & 6 & 5 & 3 & 4 & 2 & 1 \\ 5 & 4 & 7 & 1 & 2 & 6 & 3 }.
[/mm]
Dann soll ich a als disjunkte Zyklen darstellen, da hab ich folgendes:
a = (1 5 2 4) [mm] \circ [/mm] (3 7) [mm] \circ [/mm] (6).
Und schließlich sollte ich b als Transpositionen darstellen:
b = (1 7) [mm] \circ [/mm] (2 6) [mm] \circ [/mm] (3 4) [mm] \circ [/mm] (3 5).
Bei der letzten Aufgabe wusste ich nicht mehr so recht weiter, wie ich das machen soll, da soll ich [mm] a^{4} [/mm] und [mm] a^{1001} [/mm] bestimmen, soll dass sowas wie [mm] a^{4} [/mm] = a [mm] \circ [/mm] a [mm] \circ [/mm] a [mm] \circ [/mm] a sein???
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:02 So 27.11.2005 | Autor: | felixf |
> Hallo!
>
> Ich habe folgende Aufgabe auf und hab schon ein paar Sachen
> dazu gerechnet, vielleicht kann mal jemand gucken, ob das
> soweit richtig ist.
>
> Ich hab zwei Permutationen gegeben:
> [mm]a=\pmat{ 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 4 & 7 & 1 & 2 & 6 & 3 }[/mm]
>
> [mm]b=\pmat{ 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 5 & 3 & 4 & 2 & 1 }[/mm]
>
> Jetzt sollte ich a [mm]\circ b^{-1}[/mm] berechnen, da ist meine
> Lösung:
> a [mm]\circ b^{-1}[/mm] = [mm]\pmat{ 7 & 6 & 5 & 3 & 4 & 2 & 1 \\ 5 & 4 & 7 & 1 & 2 & 6 & 3 }.[/mm]
Sieht ok aus.
> Dann soll ich a als disjunkte Zyklen darstellen, da hab ich
> folgendes:
> a = (1 5 2 4) [mm]\circ[/mm] (3 7) [mm]\circ[/mm] (6).
Genau.
> Und schließlich sollte ich b als Transpositionen
> darstellen:
> b = (1 7) [mm]\circ[/mm] (2 6) [mm]\circ[/mm] (3 4) [mm]\circ[/mm] (3 5).
Jep.
> Bei der letzten Aufgabe wusste ich nicht mehr so recht
> weiter, wie ich das machen soll, da soll ich [mm]a^{4}[/mm] und
> [mm]a^{1001}[/mm] bestimmen, soll dass sowas wie [mm]a^{4}[/mm] = a [mm]\circ[/mm] a
> [mm]\circ[/mm] a [mm]\circ[/mm] a sein???
Genau. Bei dieser Aufgabe kannst du beachten, dass disjunkte Zyklen kommutieren, also z.B. (1 2) (3 4) = (3 4) (1 2). Und denk mal drueber nach was die Ordnung eines Zykels der Laenge n ist. Und benutz den kleinen Satz von Fermat.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:20 So 27.11.2005 | Autor: | bobby |
Danke, dann hab ich das ja doch ganz gut verstanden mit den Permutationen...
Zum letzten Teil habe ich jetzt
[mm] a^{4} [/mm] = [mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 } [/mm] und
[mm] a^{1001} [/mm] = [mm] \pmat{ 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 4 & 7 & 1 & 2 & 6 & 3 }
[/mm]
ermittelt, kann das hinkommen???
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:57 So 27.11.2005 | Autor: | felixf |
> Danke, dann hab ich das ja doch ganz gut verstanden mit den
> Permutationen...
Das ist schoen
> Zum letzten Teil habe ich jetzt
>
> [mm]a^{4}[/mm] = [mm]\pmat{ 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 }[/mm]
> und
> [mm]a^{1001}[/mm] = [mm]\pmat{ 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 4 & 7 & 1 & 2 & 6 & 3 }[/mm]
>
> ermittelt, kann das hinkommen???
Jep, das stimmt. Die Ordnung von [mm]a[/mm] ist 4, womit [mm]a^4 = a^0 = \mathbf{id}[/mm] ist und [mm]a^{1001} = a^{1000} \circ a = a^{4 \cdot 250} \circ a = \mathbf{id} \circ a = a[/mm].
|
|
|
|