www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - potenzreihenentwicklung
potenzreihenentwicklung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

potenzreihenentwicklung: Frage (für Interessierte)
Status: (Frage) für Interessierte Status 
Datum: 09:30 Fr 28.10.2005
Autor: calabi-yau

hallo!
könnte mir jemand vielleicht helfen die potenzreihe der komplexen funktion [mm] f(z):=\bruch{1}{(z+1)(z-1)} [/mm] um [mm] z_0=i [/mm] zu finden?
also ich hab da schon ne idee, aber ich hab jetzt im augenblick keine zeit darüber nachzudenken. deshalb stell ich die frage vorsichtshalber schon jetzt wenn ich nicht draufkomm.
also um [mm] z_1=0 [/mm] sieht die potenzreihe so aus (geom. reihe):
[mm] -\summe_{n=0}^{\infty}z^{2n}. [/mm] um [mm] z_0=i [/mm] so:
[mm] \summe_{n=0}^{\infty}b_n(z-i)^n. [/mm] jetzt müsste man eben diese reihe umstellen (nach den [mm] z^n) [/mm] und mit der ersten reihe einen koeffizienten vergleich machen.

        
Bezug
potenzreihenentwicklung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:15 Fr 28.10.2005
Autor: calabi-yau

ok die idee funktioniert nicht so richtig. hab auch schon die taylorformel und die cauchy-riemann formel probiert, mag aber alles nicht so recht hinhauen. wär nett wenn mir da jemand weiterhelfen würde.

Bezug
        
Bezug
potenzreihenentwicklung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:49 Mo 31.10.2005
Autor: matux

Hallo calabi-yau!


Leider konnte Dir keiner hier mit Deinem Problem in der von Dir vorgegebenen Zeit weiterhelfen.

Vielleicht hast Du ja beim nächsten Mal mehr Glück [kleeblatt] .

Viele Grüße,
Matux, der Foren-Agent

Allgemeine Tipps wie du dem Überschreiten der Fälligkeitsdauer entgegenwirken kannst findest du in den Regeln für die Benutzung unserer Foren.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]