www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - quadratische Ergänzung
quadratische Ergänzung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

quadratische Ergänzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:53 Mi 30.09.2009
Autor: Frank_BOS

Aufgabe
[mm] T3(x)=2a^{2}-5a-16=(2a+\bruch{5}{2})^{2} [/mm] - [mm] \bruch{89}{4} [/mm]

so komme hier nicht weiter. Bitte um HIlfe.

        
Bezug
quadratische Ergänzung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:57 Mi 30.09.2009
Autor: Herby

Hallo,

steht das so irgendwo [haee]

[mm]T3(x)=2a^{2}-5a-16=(2a+\bruch{5}{2})^{2}[/mm] - [mm]\bruch{89}{4}[/mm]

Das ist falsch! Wenn du 2a quadrierst, dann steht da [mm] \red{4}a^2+.... [/mm]


>
>  so komme hier nicht weiter. Bitte um HIlfe.

ich auch nicht ;-)


Lg
Herby

Bezug
                
Bezug
quadratische Ergänzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:06 Mi 30.09.2009
Autor: Frank_BOS

Aufgabe
[mm] T3(x)=2a^{2}-5a-16=2(a^{2.}-\bruch{5}{2}a-8)= [/mm]
[mm] =2[(a^{2}-2*\bruch{5}{4}+(\bruch{5}{4})^{2}-(\bruch{5}{4})^{2} [/mm]
[mm] =2[(a+\bruch{5}{4})^{2}-\bruch{25}{16}-8] [/mm]

bis dahin und weiter weiß ich ejtzt nicht mehr

Bezug
                        
Bezug
quadratische Ergänzung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:16 Mi 30.09.2009
Autor: Herby

Hi,

is doch hübsch :-)

> [mm]T3(x)=2a^{2}-5a-16=2(a^{2.}-\bruch{5}{2}a-8)=[/mm]

sehr gut [ok]

>  
> [mm]=2\left[a^{2}-2*\bruch{5}{4}\red{a}+(\bruch{5}{4})^{2}-(\bruch{5}{4})^{2}\red{-8}\right][/mm]

Schreibfehler, sonst richtig

>  [mm]=2\left[\left(a\red{-}\bruch{5}{4}\right)^{2}-\bruch{25}{16}-8\right][/mm]
>  bis dahin und weiter weiß ich ejtzt nicht mehr

Jetzt die -25/16 und die -8 vereinen und dann die 2 wieder in die [mm] \text{eckige} [/mm] Klammer hineinmultiplizieren


Lg
Herby

Bezug
                                
Bezug
quadratische Ergänzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:35 Mi 30.09.2009
Autor: Frank_BOS


> Hi,
>  
> is doch hübsch :-)
>  
> > [mm]T3(x)=2a^{2}-5a-16=2(a^{2.}-\bruch{5}{2}a-8)=[/mm]
>  
> sehr gut [ok]
>  
> >  

> >
> [mm]=2\left[a^{2}-2*\bruch{5}{4}\red{a}+(\bruch{5}{4})^{2}-(\bruch{5}{4})^{2}\red{-8}\right][/mm]
>  
> Schreibfehler, sonst richtig
>  
> >  

> [mm]=2\left[\left(a\red{-}\bruch{5}{4}\right)^{2}-\bruch{25}{16}-8\right][/mm]
>  >  bis dahin und weiter weiß ich ejtzt nicht mehr
>
> Jetzt die -25/16 und die -8 vereinen und dann die 2 wieder
> in die [mm]\text{eckige}[/mm] Klammer hineinmultiplizieren
>  
>
> Lg
>  Herby  
> [mm]=2\left[\left(a\red{-}\bruch{5}{4}\right)^{2}-\bruch{5}{4}-\bruch{32}{4}\right][/mm]

> [mm]=2\left[\left(a\red{-}\bruch{5}{4}\right)^{2}-\bruch{37}{4}\right][/mm]

> [mm]=\left[\left(a\red{-}\bruch{5}{4}\right)^{2}-\bruch{74}{4}\right][/mm]

> [mm]=\left[\left(a-\bruch{5}{4}\right)+\bruch{74}{4}\right][/mm][mm] \left[\left(a\red{-}\bruch{5}{4}\right)-\bruch{74}{4}\right][/mm]

> [mm]=\left(a-\bruch{69}{4}\right)][/mm][mm]\left(a\red{-}\bruch{79}{4}\right)][/mm]

passt der so?


Bezug
                                        
Bezug
quadratische Ergänzung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:41 Mi 30.09.2009
Autor: Herby

Hallo,

> > Hi,
>  >  
> > is doch hübsch :-)
>  >  
> > > [mm]T3(x)=2a^{2}-5a-16=2(a^{2.}-\bruch{5}{2}a-8)=[/mm]
>  >  
> > sehr gut [ok]
>  >  
> > >  

> > >
> >
> [mm]=2\left[a^{2}-2*\bruch{5}{4}\red{a}+(\bruch{5}{4})^{2}-(\bruch{5}{4})^{2}\red{-8}\right][/mm]
>  >  
> > Schreibfehler, sonst richtig
>  >  
> > >  

> >
> [mm]=2\left[\left(a\red{-}\bruch{5}{4}\right)^{2}-\bruch{25}{16}-8\right][/mm]
>  >  >  bis dahin und weiter weiß ich ejtzt nicht mehr
> >
> > Jetzt die -25/16 und die -8 vereinen und dann die 2 wieder
> > in die [mm]\text{eckige}[/mm] Klammer hineinmultiplizieren
>  >  
> >
> > Lg
>  >  Herby  
> >
> [mm]=2\left[\left(a\red{-}\bruch{5}{4}\right)^{2}-\bruch{5}{4}-\bruch{32}{4}\right][/mm]

nein, nein, nein, .....

es ist niemals [mm] \bruch{25}{16}=\bruch{5}{4} [/mm]


25 und 16 haben [mm] \text{\red{keinen}} [/mm] gemeinsamen Teiler - da ist nix und nimmer was mir kürzen drin!

Du musst mit den 16teln leben und weiterrechnen (außer du multiplizierst gleich die 2 vor der eckigen Klammer rein)


Lg
Herby

Bezug
                                                
Bezug
quadratische Ergänzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:48 Mi 30.09.2009
Autor: Frank_BOS

Aufgabe
[mm] (a-5/4)^{2}-25/16-128/16 [/mm]
[mm] (a-5/4)^{2}-153/16 [/mm]
[(a-5/4)+153/16][(a-5/4)-153/16]
(a+133/16)(a-173/16)

Bitte sag es stimmt!!!


mein Gott das bringt mich um ich muss schlafen

Bezug
                                                        
Bezug
quadratische Ergänzung: nu aber ;-)
Status: (Antwort) fertig Status 
Datum: 23:55 Mi 30.09.2009
Autor: Herby

Hallo

> [mm]\red{2}*[(a-5/4)^{2}-25/16-128/16][/mm]
>  [mm]2*[(a-5/4)^{2}-153/16][/mm]

[daumenhoch] so passt das - wenn die 2 da noch gewesen wäre

>  2*[(a-5/4)+153/16][(a-5/4)-153/16]

hier fehlt die Wurzel, weil [mm] \bruch{153}{16} [/mm] sind ja eigentlich [mm] b^2 [/mm] und daher

[mm] 2*\left[\left(a-\bruch{5}{4}\right)+\wurzel{\bruch{153}{16}}\right]*\left[\left(a-\bruch{5}{4}\right)-\wurzel{\bruch{153}{16}}\right]=2*\left[\left(a-\bruch{5}{4}\right)+\bruch{\wurzel{153}}{4}\right]*\left[\left(a-\bruch{5}{4}\right)-\bruch{\wurzel{153}}{4}\right] [/mm]

>  (a+133/16)(a-173/16)
>  Bitte sag es stimmt!!!

fast - ;-)

>
> mein Gott das bringt mich um ich muss schlafen

ich auch - [gutenacht]


Lg
Herby

Bezug
                                                                
Bezug
quadratische Ergänzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:05 Do 01.10.2009
Autor: Frank_BOS

danke und gute Nacht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]