www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - quadratische Gleichungen
quadratische Gleichungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

quadratische Gleichungen: Hilfe, seltsame Fragestellung
Status: (Frage) beantwortet Status 
Datum: 21:50 Mi 22.08.2007
Autor: LadyGlamour

Aufgabe
Frage: Zerlegen Sie bitte die natürliche Zahl 2268 so in ein Produkt zweier Faktoren, dass die Summe dieser Faktoren 99 ist. Geben Sie die Faktoren an.  

Hallo,  

vielleicht kann mir mal jemand einen Tipp geben, wie ich bei so einer Aufgabe vorgehen kann. Soll ich wie beim Zerlegen von quadratischen Termen in Linearfaktoren die Lösungsmenge angeben? Aber wie?
Vielen, vielen Dank schon mal im vorrauß für deinen Hilfe!!!

Angi

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
quadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:58 Mi 22.08.2007
Autor: schachuzipus

Hallo Angelique.

wir müssen versuchen, aus der Aufgabenstellung Gleichungen herauszufiltern.

Nennen wir doch die beiden gesuchten Zahlen (Faktoren) $a$ und $b$

Nun wissen wir aus der Aufgabe, dass das Produkt [mm] $a\cdot{}b=2268$ [/mm] sein soll und die Summe $a+b=99$

Nun kannst du bestimmt $a$ und $b$ bestimmen....  ;-)

LG

schachuzipus

Bezug
                
Bezug
quadratische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:09 Mi 22.08.2007
Autor: LadyGlamour

also dann ist q=2268 und -p=99 daraus Diskriminate ziehen?

Bezug
                        
Bezug
quadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:18 Mi 22.08.2007
Autor: schachuzipus

Hi,

ja, du erhältst die quadratische Gleichung [mm] b^2-99b+2268=0 [/mm]

Also hast du richtigerweise p=-99 und q=2268

Ich würde einfach die p/q-Formel ansetzen...




Gruß

schachuzipus

Bezug
                                
Bezug
quadratische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:38 Mi 22.08.2007
Autor: LadyGlamour

ich bekomme als x1 = 97,55 und x2= 1,455 heraus.

97,55 + 1,455 = 99,01

97,55 * 1,455 = 1419  das kann wohl net stimmen, oder?

Bezug
                                        
Bezug
quadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:43 Mi 22.08.2007
Autor: schachuzipus

[kopfschuettel] das stimmt nicht ...


Nun, die Gleichung ist [mm] b^2-99b+2268=0 [/mm]

[mm] \Rightarrow b_{1,2}=\frac{99}{2}\pm\sqrt{\left(-\frac{99}{2}\right)^2-2268} [/mm]

Also [mm] b_{1,2}=.... [/mm]


LG

schachuzipus

Bezug
                                                
Bezug
quadratische Gleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:56 Mi 22.08.2007
Autor: LadyGlamour

also ich hab die Formel

D= ( p :2)² - q verwendet

dann -p [mm] +/-\wurzel{3}D [/mm]

ich komm mit deiner auch auf einen komischen Wert...kann auch net sein;-(
Bist du noch fit;-)

Bezug
                                                        
Bezug
quadratische Gleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:05 Mi 22.08.2007
Autor: schachuzipus

Jo, ich schon ;-)

ok, das D da bei dir ist die Diskriminante, also das, was in der p/q-Formel unter der Wurzel steht.

Deine zweite Formel kenne ich nicht ;-)


Mal gerechnet ist das so:

[mm] b_{1,2}=\frac{99}{2}\pm\sqrt{\left(-\frac{99}{2}\right)^2-2268} [/mm]

[mm] \Rightarrow b_{1,2}=\frac{99}{2}\pm\sqrt{\frac{9801}{4}-2268} [/mm]

[mm] \Rightarrow b_{1,2}=\frac{99}{2}\pm\sqrt{\frac{9801}{4}-\frac{9072}{4}} [/mm]

[mm] \Rightarrow b_{1,2}=\frac{99}{2}\pm\sqrt{\frac{729}{4}} [/mm]

[mm] \Rightarrow b_{1,2}=\frac{99}{2}\pm\frac{27}{2} [/mm]

Also [mm] b_1=\frac{126}{2}=63 [/mm] bzw. [mm] b_2=\frac{72}{2}=36 [/mm]

Und damit [mm] a_1=36 [/mm] bzw. [mm] a_2=63 [/mm]

Probe: [mm] 63\cdot{}36=2268 [/mm] passt! und 63+36=99 passt auch


Gruß

schachuzipus

Bezug
                                                                
Bezug
quadratische Gleichungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:15 Mi 22.08.2007
Autor: LadyGlamour

Vielen Dank für deine Hilfe. Ich muss mir die Aufgabe morgen noch mal in Ruhe anschauen. Ich glaub ich steig durch. Solche Aufgaben macht man ja nicht zum ersten mal;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]