www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - quadratische Matrix ( symmetri
quadratische Matrix ( symmetri < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

quadratische Matrix ( symmetri: Frage
Status: (Frage) beantwortet Status 
Datum: 19:15 Mo 22.11.2004
Autor: Yellowbird

Hallo Ich habe ein Problem mit folgender Aufgabe:

Es sei A=(aij) eine quadratische Matrix in M(n;K). Dann heißt A symmetrisch (bzw. schiefsymmetrisch), falls aij=aij ( bzw. aij=-aij) für alle [mm] 1\le [/mm] i,j [mm] \le [/mm] n gilt. Zeigen Sie

1) M(n;K)=S(n;K) [mm] \oplus [/mm] A(n;K) falls Char(K) [mm] \not= [/mm] 2

2) dim M (m [mm] \times [/mm] n; K) = nm, dim s(n;K)= n(n+1)/2 und dim A(n;K)= n(n-1)/2 falls Char(K) [mm] \not=2 [/mm]

Ich wäre super dankbar wenn mir jemand bei diesen beiden Aufgabenteilen helfen könnte, da ich da irgendwie nicht mit weiterkomme



        
Bezug
quadratische Matrix ( symmetri: Ansätze
Status: (Antwort) fertig Status 
Datum: 20:07 Mo 22.11.2004
Autor: Gnometech

Gruß!

Also zunächst mal ist Deine Definition verkehrt... eine Matrix $A = [mm] (a_{ij})_{i,j}$ [/mm] heißt symmetrisch, falls [mm] $a_{ij} [/mm] = [mm] a_{ji}$ [/mm] für $i,j [mm] \in \{ 1, \ldots , n\}$ [/mm] gilt. Und schiefsymmetrisch, wenn [mm] $a_{ij} [/mm] = - [mm] a_{ji}$. [/mm]

Setzen wir also voraus, dass der Körper nicht Charakteristik 2 hat - das bedeutet, dass in $K$ gilt: $2 [mm] \not= [/mm] 0$.

Dann überlege Dir als erstes: jede schiefsymmetrische Matrix hat auf der Diagonalen nur 0en stehen.

Danach geh an die Aufgaben ran:

1) Als erstes überzeuge Dich davon, dass die Summe direkt ist - das ist einfach.
Etwas schwieriger ist es, jede Matrix als Summe einer symmetrischen und einer schiefsymmetrischen darzustellen.
Auf der Diagonalen ist der Fall klar, da bei der schiefsymmetrischen Matrix nicht viel Auswahl ist. ;-) Nimm Dir einfach ein Element außerhalb der Diagonalen und stelle das entsprechende Gleichungssystem auf, das die Einträge der symmetrischen bzw. schiefsymmetrischen Matrix erfüllen müssen... dann kommst schnell drauf, wie das aussehen muß.

2) Das erste ist trivial - eine Basis springt einen geradezu an. ;-)

Für das zweite: überleg Dir, wieviele Einträge man braucht, um eine symmetrische Matrix eindeutig festzulegen und stelle darüber eine Basis zusammen - kleiner Tipp: der "kleine Gauß" (die Summenformel) könnte hilfreich sein!

Das andere geht analog (nur halt ohne die Diagonalelemente, s. oben).

Also los, frisch ans Werk! Viel Erfolg!

Lars

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]