www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - reelles System zu einer DGL
reelles System zu einer DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

reelles System zu einer DGL: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:42 So 26.11.2006
Autor: Sandy857

Aufgabe
Zeigen Sie, dass das reelle lineare System
[mm] y'_{1}=a(t)y_{1}-b(t)y_{2} [/mm]
[mm] y'_{2}=b(t)y_{1}+a(t)y_{2} [/mm]
auf eine einzige komplexe lineare DGL
z'=c(t)*z
für [mm] z=y_{1}+iy_{2} [/mm] zurückgeführt werden kann.
Lösen sie mit dieser Idee das System
[mm] y'_{1}=y_{1}*cos(t)-y_{2}*sin(t) [/mm]
[mm] y'_{2}=y_{1}*sin(t)+y_{2}*cos(t) [/mm]
mit der Anfangsbedingung [mm] y_{1}(0)=1,y_{2}(0)=0 [/mm]

Ich habe diese Frage in keinem anderen Forum gestellt.
Um eine Lösung der resultierenden komplexen DGL zu erhalten, kann man z.B. den Ansatz [mm] z(t)=e^{\phi (t)} [/mm] machen, welcher eine einfache Gleichung für [mm] \phi [/mm] liefert.
Ich weiß, dass das nicht erwünscht ist keine eigenen Ansätze zu bringen, aber ich habe leider so gar keine Ahnung wie ich da ran gehen soll.
Würde euch trotzdewm bitten mir einen Lösungsansatz zu sagen.
Danke!


        
Bezug
reelles System zu einer DGL: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:25 Di 28.11.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]