www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - rentenrechnung
rentenrechnung < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

rentenrechnung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:54 Do 24.08.2006
Autor: hiphopergirlnrwno2

hallo!!!
kann mir mal bitte einer hier die formel für die nachschüssige rentenformel für die jahre geben also wie ich n ausrechnen kann bei den rentenbarwert
wäre echt lieb danke schonmal!!!
bitte ich muss die jahre berechnen

lg sarah

        
Bezug
rentenrechnung: Hinweis
Status: (Antwort) fertig Status 
Datum: 15:23 Do 24.08.2006
Autor: VNV_Tommy

Hallo Sarah,

du musst im Grunde nichts weiter machen, als die Formel für den Barwert einer nachschüssigen Rente nach der Laufzeit umzustellen.

Die Formel für den Barwert einer nachschüssigen Rente lautet:

BW = R [mm] *\bruch{q^{n}-1}{q^{n}*(q-1)} [/mm]

mit
BW ... Barwert der Renten
R ... Rentenbetrag
q ... Aufzinsungsfaktor mit q=1+p; p...Prozentsatz
n ... Laufzeit

Das ganze musst du nur noch nach n umstellen.
Als Ergebnis erhälst du eine Gleichung die ungefähr so aussieht:
n = [mm] \bruch{log(...)}{log(...)} [/mm]

Ich war mal so 'nett' und habe dir nicht die vollständige Lösung hingeschrieben, damit du auch noch ein wenig Spass beim rechnen hast. ;-)
Poste doch einfach mal dein Ergebnis, dann kann man dir sagen ob du richtig liegst.

Viel Erfolg.

Gruß,
Tommy

Bezug
                
Bezug
rentenrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:18 Do 24.08.2006
Autor: hiphopergirlnrwno2

hallo!!!
ja das problem bei mir ist das ich nicht nach n auflösen soll weil wegen den ganzen q  und logarithisumus

ich kenne ja die formel dafür nur ich weiß echt nicht wie ich das umstellen soll
ihr braucht mir doch nur ein beispiel machen dann löse ich meine aufgabe schon selbst ok!!!
also nur mir sagenn wie die formel für n ist danke schonmal!!!
lg sarah

Bezug
                        
Bezug
rentenrechnung: Beispiel
Status: (Antwort) fertig Status 
Datum: 17:45 Do 24.08.2006
Autor: VNV_Tommy

Du willst ein Beispiel, du sollst ein Beispiel bekommen:

Die Formel lautet ja
[mm] BW=R*\bruch{q^{n}-1}{q^{n}*(q^{n}-1} [/mm]
Diese willst du nach n umstellen. So weit - so gut.

Jetzt das Beispiel wie man sowas löst:

Wir gehen von folgender Gleichung aus:

[mm] a=b*\bruch{c^{n}}{d} [/mm]

Dann stellen wir die Gleichung so um, daß die Potenz mit dem Exponenten n allein auf einer Seite steht:
(Rechenschritte: 1. mal d; 2. durch b)

[mm] c^{n} [/mm] = [mm] \bruch{a*d}{b} [/mm]

Um nun den Exponenten runter in die Basis zu holen müssen wir auf BEIDEN Seiten der Gleichung den Logarithmus anwenden

[mm] log(c^{n}) [/mm] = [mm] log(\bruch{a*d}{b}) [/mm]

Nach Logarithmengesetzt (bitte im Tabellenbuch/Tafelwerk/Formelsammlung etc. nachschlagen!) kannst du
[mm] log(c^{n})=n*log(c) [/mm] setzen.

Es ergibt sich:
[mm] n*log(c)=log(\bruch{a*d}{b}) [/mm]

Nun noch durch log(c) dividieren und du erhälst:
[mm] n=\bruch{log(\bruch{a*d}{b})}{log(c)} [/mm]

Ende des Beispiels.

Ähnlich verläuft die Lösung deiner eigentlichen Aufgabe.

Gruß,
Tommy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]