www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - richtig kürzen
richtig kürzen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

richtig kürzen: Bruch mit Unbekannten kürzen
Status: (Frage) beantwortet Status 
Datum: 11:27 So 15.04.2012
Autor: Natilin

Aufgabe
[mm] x^2+x-2 [/mm]
________
[mm] x^2 [/mm] +2x -3

Ich muss hier herausfinden, ob es sich um eine hebbare DefLücke oder einen Pol handelt, allerdings ist mein Problem nur das Kürzen, deshalb habe ich auch diesen Teil des Forums gewählt.
Ich habe im Internet mit einem Rechner herausgefunden, dass ich das Ganze mit x-1 kürzen kann, sodass (x+2):(x+3) herauskommt.
Kann mir jemand erklären, wie ich das mache?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
richtig kürzen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:43 So 15.04.2012
Autor: angela.h.b.



Hallo,

Du interessiert Dich für die Funktion mit [mm] f(x)=\bruch{x^2+x-2}{x^2+2x-3}. [/mm]

Als erstes denkt man hier über den maximalen Definitionsbereich nach.
Du hast offenbar schon festgestellt, daß für x=1 und x=-3 der Nenner =0 wird, Du diese Stellen also aus dem Definitionsbereich ausnehmen mußt.

Du kannst den Nenner [mm] x^2+2x-3 [/mm] schreiben als [mm] x^2+2x-3=(x-1)(x+3). [/mm]

(Immer, wenn eine ganzrationale Funktion eine Nullstelle [mm] x_N [/mm] hat, kann man einen Linearfaktor [mm] (x-x_N) [/mm] ausklammern. Das wurde ziemlich sicher besprochen.)

Nun wenden wir uns dem Zähler zu und fragen uns, ob die beiden Nullstellen des Nenners oder eine von ihnen auch Nullstellen des Zählers sind.

Einsetzen ergibt: x=1 ist eine Nullstelle des Zählers, also kann man (x-1) ausklammern, x=3 ist keine Nullstelle des Zählers.

Nun mußt Du rausfinden: [mm] x^2+x-2=(x-1)*was? [/mm]
Du kannst hierfür eine Polynomdivision machen und findest
[mm] (x^2+x-2):(x-1)=(x+2). [/mm]

Also hast Du [mm] \bruch{x^2+x-2}{x^2+2x-3}=\bruch{(x-1)(x+2)}{(x-1)(x+3)}, [/mm]
und wie es nun weitergeht, weißt Du wieder selber.

LG Angela






>  Ich muss hier herausfinden, ob es sich um eine hebbare
> DefLücke oder einen Pol handelt, allerdings ist mein
> Problem nur das Kürzen, deshalb habe ich auch diesen Teil
> des Forums gewählt.
>  Ich habe im Internet mit einem Rechner herausgefunden,
> dass ich das Ganze mit x-1 kürzen kann, sodass (x+2):(x+3)
> herauskommt.
>  Kann mir jemand erklären, wie ich das mache?
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
                
Bezug
richtig kürzen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:46 So 15.04.2012
Autor: Natilin

Vielen Dank für die Hilfe,
wir haben das mit dem Linearfaktor zwar noch nicht durchgenommen, aber das ist in dieser Aufgabe die einzige sinnvolle Möglichkeit. Musste mich erst reinlesen, habs aber dann verstanden. Also gibt es wohl bei 1 eine hebbare DefLücke und der Rest ist ein Pol. :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]