satz von Gauß-Markov < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei A die Designmatrix (1 2 ... [mm] n)^{T}.
[/mm]
Berechnen Sie alle Matriizen und Größen, die für diesen Fall im Satz von Gauß-Markov auftreten (den optimalen Schätzer, [mm] V^{*} [/mm] usw.) |
hallo
also zuerst einmal unsere version vom satz von Gauß-Markov:
Im linearen Modell werden die besten Schätzungen so beschrieben:
(i) Derjenige Vektor [mm] \gamma' [/mm] ,für den [mm] A\gamma' [/mm] kleinstmöglichen abstand zu X hat ist durch [mm] \gamma' [/mm] := [mm] (A^{T}A)^{-1}A^{T}X [/mm] gegeben.
(ii) [mm] X\mapsto\gamma' [/mm] ist ein erwartungstreuer linearer schätzer für [mm] \gamma.
[/mm]
(iii) Die kovarienzmatrix dieses schätzers ist [mm] \sigma^{2}(A^{T}A)^{-1}.
[/mm]
(iv) die streuung von [mm] \gamma' [/mm] , also der erwartungswert von [mm] \parallel \gamma- \gamma' \parallel^{2}=\sigma^{2}Spur(A^{T}A)^{-1}
[/mm]
(v) [mm] \gamma' [/mm] ist optimal
(vi) Bezeichnet U das Bild von A,so gilt: [mm] V^{*}:= \bruch{ \parallel X\parallel^{2} - \parallel P_{U}X \parallel^{2}}{n-s}=\bruch{ \parallel X-P_{U}X \parallel^{2}}{n-s} [/mm] ist ein erwartungstreuer schätzer für [mm] \sigma^{2}.
[/mm]
Dabei soll [mm] A^{T} [/mm] die transponierte zu A sein und n=#zeilen , s=#spalten
ich habe mal so angefangen:
(i) [mm] \gamma' [/mm] := [mm] (A^{T}A)^{-1}A^{T}X=(\summe_{i=1}^{n}i^{2})^{-1}*\summe_{i=1}^{n}ix_{i}=\bruch{6}{n(n+1)(2n+1)}*\summe_{i=1}^{n}ix_{i}
[/mm]
[mm] (iii)\sigma^{2}(A^{T}A)^{-1}=\sigma^{2}*\bruch{6}{n(n+1)(2n+1)}
[/mm]
Bei (iv) gehts dann mit den problemen [mm] los:\sigma^{2}Spur(A^{T}A)^{-1}=\sigma^{2}*Spur\bruch{6}{n(n+1)(2n+1)}=\sigma^{2}*\bruch{6}{n(n+1)(2n+1)}
[/mm]
und bei (vi) weiß ich dann gar nicht mehr weiter...
wäre schön, wenn mir jemand helfen würde
Grüße
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:51 Di 15.06.2010 | Autor: | fred97 |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> Eingabefehler: "{" und "}" müssen immer paarweise
> auftreten, es wurde aber ein Teil ohne Entsprechung
> gefunden (siehe rote Markierung)
> Eingabefehler: "{" und "}" müssen immer paarweise
> auftreten, es wurde aber ein Teil ohne Entsprechung
> gefunden (siehe rote Markierung)
> Eingabefehler: "{" und "}" müssen immer paarweise
> auftreten, es wurde aber ein Teil ohne Entsprechung
> gefunden (siehe rote Markierung)
> Eingabefehler: "{" und "}" müssen immer paarweise
> auftreten, es wurde aber ein Teil ohne Entsprechung
> gefunden (siehe rote Markierung)
>
> Sei A die Designmatrix (1 2 ... n)^{T}.
> Berechnen Sie alle Matriizen und Größen, die für diesen
> Fall im Satz von Gauß-Markov auftreten (den optimalen
> Schätzer, V^{*} usw.)
> hallo
> also zuerst einmal unsere version vom satz von
> Gauß-Markov:
> Im linearen Modell werden die besten Schätzungen so
> beschrieben:
> (i) Derjenige Vektor \gamma' ,für den A\gamma'
> kleinstmöglichen abstand zu X hat ist durch \gamma' :=
> (A^{T}A)^{-1}A^{T}X gegeben.
> (ii) X\mapsto\gamma' ist ein erwartungstreuer linearer
> schätzer für \gamma.
> (iii) Die kovarienzmatrix dieses schätzers ist
> \sigma^{2}(A^{T}A)^{-1}.
> (iv) die streuung von \gamma' , also der erwartungswert
> von \parallel \gamma- \gamma'
> \parallel^{2}=\sigma^{2}Spur(A^{T}A)^{-1}
> (v) \gamma' ist optimal
> (vi) Bezeichnet U das Bild von A,so gilt: V^{*}:= \bruch{
> \parallel X\parallel^{2} - \parallel P_{U}X
> \parallel^{2}}{n-s}=\bruch{ \parallel X-P_{U}X
> \parallel^{2}}{n-s} ist ein erwartungstreuer schätzer für
> \sigma^{2}.
>
> Dabei soll A^{T} die transponierte zu A sein und n=#zeilen
> , s=#spalten
>
> ich habe mal so angefangen:
> (i) \gamma' :=
> (A^{T}A)^{-1}A^{T}X=(\summe_{i=1}^{n}i^{2})^{-1}*\summe_{i=1}^{n}ix_{i}=\bruch{6}{n(n+1)(2n+1)}*\summe_{i=1}^{n}ix_{i}
>
> (iii)\sigma^{2}(A^{T}A)^{-1}=\sigma^{2}*\bruch{6}{n(n+1)(2n+1)}
>
> Bei (iv) gehts dann mit den problemen
> los:\sigma^{2}Spur(A^{T}A)^{-1}=\sigma^{2}*Spur\bruch{6}{n(n+1)(2n+1)}(2n+1)}}=\sigma^{2}*\bruch{6}{n(n+1)(2n+1)}(2n+1)}}
>
>
> und bei (vi) weiß ich dann gar nicht mehr weiter...
> wäre schön, wenn mir jemand helfen würde
> Grüße
Kannst Du das mal lesbar machen ?
FRED
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:20 Do 17.06.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|