www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - seltsame PDE lösen
seltsame PDE lösen < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

seltsame PDE lösen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:02 Do 02.12.2010
Autor: Snarfu

Aufgabe
Sei [mm] $u(x):=\chi_{B_1(0)\setminus{0}} \frac{x}{|x|}d\mathcal{L}^3\in\IR^2$ [/mm]

z.Z. $u$ löst:
[mm] $\int_{B_1(0)}d\mathcal{L}^3 [/mm] = [mm] $\int_{B_1(0)}|Du|^2d\mathcal{L}^3\;\forall \phi\inC_c^\infty (B_1(0),\IR^3)$ [/mm]

Hierbei ist [mm] $<(a^i_j),(b^k_l)>:=a_j^i b^j_i$ [/mm] und [mm] $|\cdot|:=<\cdot,\cdot>^\frac{1}{2}$ [/mm]

Hallo Forum,

mir fehlt leider völlig das Verständnis für obige Aufgabe. Ich bin nicht einmal sicher was es mit dem [mm] $\chi$ [/mm] auf sich hat. Was ist hier zu tun? Partiell integrieren vielleicht/wahrscheinlich? Aber wie sähe das in so einem Fall aus?

Vielen Dank und schöne Grüße.


Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
seltsame PDE lösen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:35 Mo 06.12.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]