www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - stationäre Punkte
stationäre Punkte < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stationäre Punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:50 Mi 22.07.2009
Autor: Marizz

Aufgabe
f(x,y)= y²(x+2)+(x-6)²

Suchen Sie Extrema und Sattelpunkte

notwendige Bedingung: [mm] f_{x}(x,y)=0 [/mm]   ,   [mm] f_{y}(x,y)=0 [/mm]

[mm] f_{x}(x,y)= [/mm] y²+2x-12

wie kann ich jetz einen reellen Wert für x herausfinden, der unabhängig ist von y? muss ich es dann mit [mm] f_{y}(x,y) [/mm] versuchen? geht das auch?

        
Bezug
stationäre Punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 22:57 Mi 22.07.2009
Autor: schachuzipus

Hallo Marizz,

> f(x,y)= y²(x+2)+(x-6)²
>  
> Suchen Sie Extrema und Sattelpunkte
>  notwendige Bedingung: [mm]f_{x}(x,y)=0[/mm]   ,   [mm]f_{y}(x,y)=0[/mm]
>  
> [mm]f_{x}(x,y)=[/mm] y²+2x-12
>  
> wie kann ich jetz einen reellen Wert für x herausfinden,
> der unabhängig ist von y? muss ich es dann mit [mm]f_{y}(x,y)[/mm]
> versuchen? geht das auch?

Es fehlt dir noch [mm] $f_y(x,y)$ [/mm]

Es muss ja sowohl [mm] $f_x(x,y)=0$ [/mm] als auch [mm] $f_y(x,y)=0$ [/mm] sein

Also [mm] $y^2+2(x-6)=0 [/mm] \ [mm] \wedge [/mm] \ 2y(x+2)=0$

Die zweite Bedingung liefert dir $y=0 \ [mm] \vee [/mm] \ x=-2$

Damit nun in die erste Bedingung rein ...

LG

schachuzipus



Bezug
                
Bezug
stationäre Punkte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:18 Mi 22.07.2009
Autor: Marizz

aha... ok!

wenn ich y=0 in [mm] f_{x}(x,y) [/mm] einsetze, dann kommt für x=6 raus

wenn ich x=-2 in [mm] f_{x}(x,y) [/mm] einsetze kommt [mm] y=\pm4 [/mm]

dh, also ich habe insgesamt 3 stationäre punkte
(0,6)
(-2,4)
(-2,-4)

jetzt bin ich doch auf dem richtigen weg oder? jetzt kann ich es ganz normal in die hinreichende Bedingung einsetzen und untersuchen... =)

Bezug
                        
Bezug
stationäre Punkte: Antwort
Status: (Antwort) fertig Status 
Datum: 23:22 Mi 22.07.2009
Autor: schachuzipus

Hallo nochmal,

> aha... ok!
>  
> wenn ich y=0 in [mm]f_{x}(x,y)[/mm] einsetze, dann kommt für x=6
> raus
>  
> wenn ich x=-2 in [mm]f_{x}(x,y)[/mm] einsetze kommt [mm]y=\pm4[/mm]
>  
> dh, also ich habe insgesamt 3 stationäre punkte
>  (0,6)

;-)

Die Punkte bezeichnen wir doch mit (x,y), also sollte das $(6,0)$ sein ..

>  (-2,4) [ok]
>  (-2,-4) [ok]
>  
> jetzt bin ich doch auf dem richtigen weg oder? jetzt kann
> ich es ganz normal in die hinreichende Bedingung einsetzen
> und untersuchen... =)

Jo, nun weiter mit der Hessematrix ...


LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]