www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - stationäre Punkte berechnen
stationäre Punkte berechnen < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stationäre Punkte berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:24 Mi 05.12.2012
Autor: mwieland

Aufgabe
Betrachten Sie filgende Funktion:

[mm] f(x,y)=x^{3}y-x+y^{2} [/mm]

c) Berechnen Sie alle stationören Punkte und bestimmen Sie deren Typen.

Hallo, hab hier zu dem Bsp. eine kurze Frage:

Um die stationären Punkte zu berechnen, setze ich ja die ersten partiellen Ableitungen null.

Hier ist das zB:

[mm] f_{x}=3x^{2}y-1=0 [/mm]

jetzt habe ich hier 2 unbekannte, aber nur eine gleichung, muss ich einfach eine davon frei wählen oder wie komme ich hier auf meine punkte?

vielen dank, lg
markus

        
Bezug
stationäre Punkte berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:28 Mi 05.12.2012
Autor: schachuzipus

Hallo Markus,


> Betrachten Sie filgende Funktion:
>  
> [mm]f(x,y)=x^{3}y-x+y^{2}[/mm]
>  
> c) Berechnen Sie alle stationören Punkte und bestimmen Sie
> deren Typen.
>  Hallo, hab hier zu dem Bsp. eine kurze Frage:
>  
> Um die stationären Punkte zu berechnen, setze ich ja die
> ersten partiellen Ableitungen null.
>
> Hier ist das zB:
>  
> [mm]f_{x}=3x^{2}y-1=0[/mm]
>  
> jetzt habe ich hier 2 unbekannte, aber nur eine gleichung,
> muss ich einfach eine davon frei wählen oder wie komme ich
> hier auf meine punkte?

Du hast doch 2 partielle Ableitungen:

[mm]f_x[/mm] und [mm]f_y[/mm]

Zur Bestimmung der stat. Punkte löse das Gleichungssystem:

(1) [mm]f_x(x,y)=0[/mm]
(2) [mm]f_y(x,y)=0[/mm]

>  
> vielen dank, lg
>  markus

Gruß

schachuzipus


Bezug
                
Bezug
stationäre Punkte berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:29 Mi 05.12.2012
Autor: mwieland

ah ok, so geht das...

vielen dank ;)

Bezug
                
Bezug
stationäre Punkte berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:32 Mi 05.12.2012
Autor: mwieland

ok ist jetzt wahrscheinlich eine blöde frage, aber ich tu mir grad schwer dieses gleichungssystem zu lösen...

[mm] f_{x}=3x^{2}y-1=0 [/mm]
[mm] f_{y}=x^{3}+2y=0 [/mm]

kann mir jemand schnell auf die sprünge helfen, hab grad ein immenses black-out denk ich...

dank und lg

Bezug
                        
Bezug
stationäre Punkte berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:36 Mi 05.12.2012
Autor: schachuzipus

Hallo nochmal,


> ok ist jetzt wahrscheinlich eine blöde frage, aber ich tu
> mir grad schwer dieses gleichungssystem zu lösen...
>  
> [mm]f_{x}=3x^{2}y-1=0[/mm]
>  [mm]f_{y}=x^{3}+2y=0[/mm]
>  
> kann mir jemand schnell auf die sprünge helfen, hab grad
> ein immenses black-out denk ich...

die beste Möglichkeit:

Etwas länger als 30 Sekunden drüber nachdenken und einfach auch was versuchen, kann ja nix kaputtgehen.

Löse in [mm]f_y[/mm] nach y auf und setze in [mm]f_x[/mm] ein ...

>  
> dank und lg

Jetzt aber mehr Eigenleistung - wir wollen Ergebnisse sehen ;-)

LG

schachuzipus


Bezug
                                
Bezug
stationäre Punkte berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:41 Mi 05.12.2012
Autor: mwieland

ja danke, das hab ich auch versucth, aber da kommen total grausame zahlen raus...

wenn ich nach y auflöse komme ich auf [mm] y=-\bruch{x^{3}}{2}, [/mm]

das dann eignesetzt ergibt in [mm] f_{x} [/mm]

[mm] -\bruch{3}{2}*x^{5}=1 [/mm] und dann ist also [mm] x=\wurzel[5]{-\bruch{2}{3}} [/mm]

gibts das?

dank und lg

Bezug
                                        
Bezug
stationäre Punkte berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:54 Mi 05.12.2012
Autor: schachuzipus

Hallo nochmal,


> ja danke, das hab ich auch versucth, aber da kommen total
> grausame zahlen raus...
>  
> wenn ich nach y auflöse komme ich auf [mm]y=-\bruch{x^{3}}{2},[/mm]
>
> das dann eignesetzt ergibt in [mm]f_{x}[/mm]
>  
> [mm]-\bruch{3}{2}*x^{5}=1[/mm] und dann ist also
> [mm]x=\wurzel[5]{-\bruch{2}{3}}[/mm][ok]
>  
> gibts das?

Jo, ist halt hier was Krummes und auch die einzige reelle Lösung von [mm]x^5=-2/3[/mm]

>  
> dank und lg

Gruß

schachuzipus


Bezug
                                                
Bezug
stationäre Punkte berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:57 Mi 05.12.2012
Autor: mwieland

ok vielen dank, ist mir nur am anfang komisch vorgekommen wenn zahlen mit 5-ter wurzel u so rauskommen... ist oft serh verdächtig, dass etwas nicht stimmt...

dank und gruß ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]