stückweise lineare Fkt. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:19 Do 27.10.2005 | Autor: | brain86 |
Hallo. Kann mir jemand bitte mit folgendem helfen. Ich komm damit nicht klar.
Also es sei [mm] (\phi [/mm] n ) die Folge der stetigen, stückweise linearen Funktionen auf I=[0,1], die durch lineare Interpolation zwischen den Punkten [mm] \phi [/mm] n(0)=0, [mm] \phi [/mm] n(1/n) = n, [mm] \phi [/mm] n(2/n) =0, [mm] \phi [/mm] n(1)=0 ensteht. Ich soll zeigen, dass diese Folge keine integrierbare Majorante (also keine Funktion [mm] \gamma \in [/mm] L(I) mit [mm] |\phi [/mm] n| [mm] \leq \gamma [/mm] für alle [mm] n\in \mathbb{N}) [/mm] besitzt kann.
Das n hinter dem [mm] \phi [/mm] soll Index sein...also (phi klein n)
|
|
|
|
Hallo!
Hast du es schon mal mit einem Widerspruchsbeweis versucht?
Angenommen, es gibt eine solche Majorante [mm] $\gamma$. [/mm] Dann müsste für jedes [mm] $x\in\left[\bruch {2n+1}{2(n+1)n};\bruch {2n-1}{2n(n-1)}\right]$ [/mm] gelten, dass [mm] $\gamma(x)\ge|\phi_n(x)|\ge |\phi_n(1/(n+1))\ge \bruch [/mm] n2$.
Also wäre [mm] $\int_0^1 \gamma(x)dx\ge \summe_{n=2}^\infty \bruch 1{n(n+1)}*\bruch n2=\bruch 12\summe_{n=1}^\infty \bruch 1{n+1}=\infty$... [/mm] Das ist ein Widerspruch.
Dabei habe ich noch benutzt, dass [mm] $\bruch {2n+1}{2(n-1)n}-\bruch{2n- 1}{2(n+1)n}\ge \bruch [/mm] 1{(n+1)n}$.
Naja, das ist eher eine Beweisskizze. Hoffentlich hilft's dir trotzdem weiter!
Gruß, banachella
|
|
|
|