topologische beziehungen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:51 Sa 04.04.2009 | Autor: | Phecda |
hi ich soll beweisen, dass für ein metrischen raum X mit zwei Teilmengen A und B gilt:
[mm] A°\cap [/mm] B°= (A [mm] \cap [/mm] B)° und
[mm] \overline{A \cup B} [/mm] = [mm] \overline{A} \cup \overline{B}
[/mm]
der kringel ist die Menge der inneren Punkte.
Mein Problem ist, dass ich nicht weiß wie ich das machen soll :P also absolut kein ansatz, hab mich schoneinige stunden mit den topologischen grundbegriffen beschäftigt, aber ich verstehs nicht
kann mir jmd helfen? bitte
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:39 Sa 04.04.2009 | Autor: | Marcel |
Hallo,
> hi ich soll beweisen, dass für ein metrischen raum X mit
> zwei Teilmengen A und B gilt:
>
> [mm]A°\cap[/mm] B°= (A [mm]\cap[/mm] B)° und
> [mm]\overline{A \cup B}[/mm] = [mm]\overline{A} \cup \overline{B}[/mm]
>
> der kringel ist die Menge der inneren Punkte.
>
> Mein Problem ist, dass ich nicht weiß wie ich das machen
> soll :P also absolut kein ansatz, hab mich schoneinige
> stunden mit den topologischen grundbegriffen beschäftigt,
> aber ich verstehs nicht
> kann mir jmd helfen? bitte
neben topologischen Begriffen/Definitionen ist das eigentlich nur eine mengentheoretische Aussage:
Zur Erinnerung:
Für zwei Mengen [mm] $A\,$ [/mm] und [mm] $B\,$ [/mm] gilt [mm] $A=B\,$ [/mm] genau dann, wenn sowohl $A [mm] \subset [/mm] B$ als auch $B [mm] \subset [/mm] A$ gilt.
Oben sei [mm] $(X,d)\,$ [/mm] der metrische Raum, also [mm] $d\,$ [/mm] die Metrik auf [mm] $X\,.$ [/mm] (Wobei man genaugenommen besser $X [mm] \times [/mm] X$ sagen würde, denn die Abbildung [mm] $d\,$ [/mm] ist ja eine Abbildung $d: X [mm] \times [/mm] X [mm] \to \IR\,.$ [/mm] Aber man hat diese abkürzende Sprechweise vereinbart, weil auch so klar ist, wie das gemeint ist.)
Also:
zunächst ist zu zeigen: $A° [mm] \cap [/mm] B°=(A [mm] \cap B)°\,.$
[/mm]
[mm] $"\subset"$ [/mm] (Wir zeigen also $A° [mm] \cap [/mm] B° [mm] \subset [/mm] (A [mm] \cap [/mm] B)°$):
Sei $x [mm] \in [/mm] A° [mm] \cap B°\,.$ [/mm] Dann gibt es wegen $x [mm] \in [/mm] A°$ ein [mm] $\varepsilon(A) [/mm] > 0$ so, dass für [mm] $U_{\varepsilon(A)}(x):=\{y \in X: d(x,y) < \varepsilon(A)\}$ [/mm] dann gilt
[mm] $$U_{\varepsilon(A)}(x) \subset A\,.$$
[/mm]
($A°$ ist ja bekanntlich offen!)
Zudem gibt es wegen $x [mm] \in [/mm] B°$ dann ein [mm] $\varepsilon(B) [/mm] > 0$ so, dass für [mm] $U_{\varepsilon(B)}(x):=\{y \in X: d(x,y) < \varepsilon(B)\}$ [/mm] dann
[mm] $$U_{\varepsilon(B)}(x) \subset [/mm] B$$
gilt.
Setze nun [mm] $\tilde{\varepsilon}:=\min \{\varepsilon(A),\;\varepsilon(B)\}$. [/mm] Warum ist [mm] $\tilde{\varepsilon} [/mm] > [mm] 0\,$?
[/mm]
Warum erfüllt [mm] $U_{\tilde{\varepsilon}}(x):=\{y \in X: d(x,y) < \tilde{\varepsilon}\}$ [/mm] dann
[mm] $$U_{\tilde{\varepsilon}}(x) \subset [/mm] (A [mm] \cap B)\text{?}$$
[/mm]
Warum gehört somit [mm] $x\,$ [/mm] zum inneren Kern von $A [mm] \cap [/mm] B$?
[mm] $"\supset"$ [/mm] (Hier ist also $(A [mm] \cap [/mm] B)° [mm] \subset [/mm] A° [mm] \cap [/mm] B°$ zu zeigen):
Ich sag's mal in Worten:
Wenn $x [mm] \in [/mm] (A [mm] \cap [/mm] B)°$ ist, dann gibt es ein [mm] $\epsilon [/mm] > 0$ so, dass [mm] $U_\epsilon(x)$ [/mm] Teilmenge von $A [mm] \cap [/mm] B$ ist. Dann ist [mm] $U_\epsilon(x)$ [/mm] aber insbesondere Teilmenge von [mm] $\,A$, [/mm] und damit gehört [mm] $x\,$ [/mm] auch schon zum inneren Kern von [mm] $A\,.$ [/mm] Analog erkennst Du, dass [mm] $x\,$ [/mm] auch zum inneren Kern von [mm] $B\,$ [/mm] gehört.
Und die Aussage
[mm] $$\overline{A \cup B}=\overline{A} \cup \overline{B}$$
[/mm]
kannst Du analog beweisen. (Vielleicht läßt sie sich auch mithilfe der bereits bewiesenen Gleichung beweisen, ich weiß es gerade nicht.)
Gruß,
Marcel
|
|
|
|