vollständig Induktion Produkt < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:24 Di 23.11.2010 | Autor: | Mandy_90 |
Aufgabe | Beweisen Sie mittels vollst¨andiger Induktion für n [mm] \in \IN, [/mm] n [mm] \ge [/mm] 1, die Identität [mm] \produkt_{k=1}^{n}(4k-2)=\produkt_{k=1}^{n}(n+k) [/mm] |
Hallo^^
Ich versuche grad diese Aufgabe zu lösen, aber komme an einer Stelle nicht mehr weiter.
Also zuerst kommt der Induktionsanfang (IA)
IA: n=1, (4*2)-2=2, 1+1=2, d.h. der IA gelingt.
Induktionsvoraussetzung: [mm] \produkt_{k=1}^{n} (4k-2)=\produkt_{k=1}^{n}(n+k) [/mm] gilt für n=1 bis n=n
Induktionsschritt: n=n+1
[mm] \produkt_{k=1}^{n+1}(4*(n+1)-2)=\produkt_{k=1}^{n+1}(n+1+k)
[/mm]
Meine erste Frage ist,was muss ich für das k auf der rechten Seite einsetzen?Etwa auch n+1? Wenn ja,dann muss ich zeigen,dass
[mm] \produkt_{k=1}^{n+1}(4*(n+1)-2)=\produkt_{k=1}^{n+1}(2n+2)
[/mm]
Erstmal bis hier hin,stimmt es bis hier hin?
lg
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:29 Di 23.11.2010 | Autor: | Loddar |
Hallo Mandy!
Im Induktionsschritt musst Du zunächst jedes $n_$ durch $n+1_$ ersetzen.
Das $k_$ wird als Konstante behandelt und bleibt so erhalten, sprich: unverändert.
Gruß
Loddar
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:21 Mi 24.11.2010 | Autor: | Mandy_90 |
> Hallo Mandy!
>
>
> Im Induktionsschritt musst Du zunächst jedes [mm]n_[/mm] durch [mm]n+1_[/mm]
> ersetzen.
>
> Das [mm]k_[/mm] wird als Konstante behandelt und bleibt so erhalten,
> sprich: unverändert.
>
Ok,das heißt ich mache jetzt den Induktionsschritt und setze für n jeweils n+1 ein,dann hab ich
[mm] \produkt_{k=1}^{n+1}(4k-2)=\produkt_{k=1}^{n+1}(n+1+k) [/mm] bzw.
[mm] \produkt_{k=1}^{n+1}2*(2k-1)=\produkt_{k=1}^{n+1}(n+1+k) [/mm] bzw.
[mm] 2*\produkt_{k=1}^{n+1}(2k-1)=\produkt_{k=1}^{n+1}(n+1+k)
[/mm]
wobei ich mir bei dem letzten Schritt unsicher bin ob ich das so machen darf.
Also mit den k's darf och nichts machen,da sie unverändert bleiben,dann kann ich auf der linken Seite gar nichts machen und muss wohl die rechte irgendwie umformen,aber irgednwie weiß ich grad nicht wie ich da jetzt ran gehen soll,kann mir jemand weiterhelfen?
Und noch eine Verständnisfrage.Wenn ich z.B habe [mm] \produkt_{k=1}^{n=3}(4k-2)=\produkt_{k=1}^{n=3}(n+k), [/mm] muss ich das dann so hinschreiben:
[mm] \produkt_{k=1}^{n=3}(4k-2)=2*6*10=120 [/mm] und
[mm] \produkt_{k=1}^{n=3}(n+k)=2*4*6=48.
[/mm]
Das stimmt aber nicht,bei welchem Produkt rechne ich denn falsch?Ich denke beim 2. aber ich weiß nicht genau wie ich das berechne,muss ich nicht für k und n jweils 1,2 und 3 einsetzen?
lg
|
|
|
|
|
Hallo Mandy,
> > Hallo Mandy!
> >
> >
> > Im Induktionsschritt musst Du zunächst jedes [mm]n_[/mm] durch [mm]n+1_[/mm]
> > ersetzen.
> >
> > Das [mm]k_[/mm] wird als Konstante behandelt und bleibt so erhalten,
> > sprich: unverändert.
> >
>
> Ok,das heißt ich mache jetzt den Induktionsschritt und
> setze für n jeweils n+1 ein,dann hab ich
>
> [mm]\produkt_{k=1}^{n+1}(4k-2)=\produkt_{k=1}^{n+1}(n+1+k)[/mm]
Ja, diese Gleichheit ist zu zeigen, nimm die linke Seite her, forme um, so dass du die IV anwenden kannst (s.u.)
> bzw.
>
> [mm]\produkt_{k=1}^{n+1}2*(2k-1)=\produkt_{k=1}^{n+1}(n+1+k)[/mm]
> bzw.
>
> [mm]2*\produkt_{k=1}^{n+1}(2k-1)=\produkt_{k=1}^{n+1}(n+1+k)[/mm]
>
> wobei ich mir bei dem letzten Schritt unsicher bin ob ich
> das so machen darf.
Na, überlege mal selber du hast ein Produkt mit [mm]n+1[/mm] Faktoren (jeweils einen Faktor für jedes k von 1 bis n+1) und in jedem der Faktoren tritt als Faktor die 2 auf, dh. du musst was rausziehen?
Nicht 2, sondern ...
> Also mit den k's darf och nichts machen,da sie
> unverändert bleiben,dann kann ich auf der linken Seite gar
> nichts machen und muss wohl die rechte irgendwie
> umformen,aber irgednwie weiß ich grad nicht wie ich da
> jetzt ran gehen soll,kann mir jemand weiterhelfen?
Ja, die Terme mit k lass mal so.
Ich würde den Faktor gar nicht vorziehen und schreiben: [mm]\prod\limits_{k=1}^{n+1}(4k-2) \ = \ \left( \ \prod\limits_{k=1}^{n}(4k-2) \ \right) \ \cdot{} \ (4(n+1)-2)[/mm]
Nun kannst du auf das erste Produkt, das von k=1 bis k=n läuft, die Induktionsvoraussetzung anwenden und es ersetzen durch ...
Dann weiter verrechnen, bis am Ende [mm]\ldots=\prod\limits_{k=1}^{n+1}(n+1+k)[/mm] herauskommt, also die rechte Seite der zu zeigenden Beh.
>
> Und noch eine Verständnisfrage.Wenn ich z.B habe
> [mm]\produkt_{k=1}^{n=3}(4k-2)=\produkt_{k=1}^{n=3}(n+k),[/mm] muss
> ich das dann so hinschreiben:
>
> [mm]\produkt_{k=1}^{n=3}(4k-2)=2*6*10=120[/mm] und
> [mm]\produkt_{k=1}^{n=3}(n+k)=2*4*6=48.[/mm]
Nein, das stimmt so nicht, es ist doch das [mm]n=3[/mm], also [mm](3+1)[/mm] für [mm]k=1[/mm], [mm](3+2)[/mm] für [mm]k=2[/mm] und [mm](3+3)[/mm] für [mm]k=3[/mm]
Also [mm]\produkt_{k=1}^{n=3}(n+k)=\produkt_{k=1}^{n=3}(3+k)=4\cdot{}5\cdot{}6=120[/mm]
> Das stimmt aber nicht,bei welchem Produkt rechne ich denn
> falsch?Ich denke beim 2. aber ich weiß nicht genau wie ich
> das berechne,muss ich nicht für k und n jweils 1,2 und 3
> einsetzen?
>
> lg
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:31 Do 25.11.2010 | Autor: | Mandy_90 |
Ok,also ich habe
[mm] \prod\limits_{k=1}^{n+1}(4k-2) [/mm] = [mm] \left( \ \prod\limits_{k=1}^{n}(4k-2) \right) \cdot{} [/mm] (4(n+1)-2) und wende die IV an,dann habe ich
[mm] =(\prod\limits_{k=1}^{n}(n+k))*(4n+2)
[/mm]
da könnte ich die zwei ausklammern,aber ich glaube das bringt mir nix,deswegen lass ich die mal drin.
Jetzt würde ich gern die 4n+2 wieder in die Summe ziehen,aber das darf ich doch nicht einfach so machen bzw. ich muss das doch umformen oder?
lg
|
|
|
|
|
Hallo Mandy,
> Ok,also ich habe
>
> [mm]\prod\limits_{k=1}^{n+1}(4k-2)[/mm] = [mm]\left( \ \prod\limits_{k=1}^{n}(4k-2) \right) \cdot{}[/mm]
> (4(n+1)-2) und wende die IV an,dann habe ich
>
> [mm]=(\prod\limits_{k=1}^{n}(n+k))*(4n+2)[/mm]
>
> da könnte ich die zwei ausklammern,aber ich glaube das
> bringt mir nix,deswegen lass ich die mal drin.
>
> Jetzt würde ich gern die 4n+2 wieder in die Summe
Was für eine Summe??
Da steht ein Produkt!
2 ausklammern ist ne gute Idee.
Schreibe die 2 als letzten Faktor und ziehe den allerersten, also den für $k=1$, das ist $(n+1)$ zu der 2 nach hinten.
Dann steht da ausgeschrieben:
[mm] $(n+2)(n+3)\cdot{}\ldots\cdot{}(2n+1)\cdot{}2(n+1)$
[/mm]
Und das ist [mm] $(n+2)(n+3)\cdot{}\ldots\cdot{}(2n+1)\cdot{}(2n+2)$
[/mm]
Und wie kannst du das schreiben?
> ziehen,aber das darf ich doch nicht einfach so machen bzw.
> ich muss das doch umformen oder?
>
> lg
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:53 Fr 26.11.2010 | Autor: | Mandy_90 |
> Was für eine Summe??
>
> Da steht ein Produkt!
Mein ich doch.
> 2 ausklammern ist ne gute Idee.
>
> Schreibe die 2 als letzten Faktor und ziehe den
> allerersten, also den für [mm]k=1[/mm], das ist [mm](n+1)[/mm] zu der 2 nach
> hinten.
>
> Dann steht da ausgeschrieben:
>
> [mm](n+2)(n+3)\cdot{}\ldots\cdot{}(2n+1)\cdot{}2(n+1)[/mm]
>
> Und das ist
> [mm](n+2)(n+3)\cdot{}\ldots\cdot{}(2n+1)\cdot{}(2n+2)[/mm]
>
> Und wie kannst du das schreiben?
Also die (n+2)(n+3)*... kann ich als Produkt von (n+1+k) schreiben,aber was ist mit (2n+1)(2n+2) ?Das kann ich doch nicht anders schreiben.
> > ziehen,aber das darf ich doch nicht einfach so machen bzw.
> > ich muss das doch umformen oder?
Also ich hab jetzt [mm] (\prod\limits_{k=1}^{n}(n+k))\cdot{}(2n+1)*(2n+2).
[/mm]
Darf ich die Klammern um die Summe schon weglassen oder nicht?Eigentlich doch nicht oder?
|
|
|
|
|
Hallo nochmal,
>
> > Was für eine Summe??
> >
> > Da steht ein Produkt!
>
> Mein ich doch.
>
> > 2 ausklammern ist ne gute Idee.
> >
> > Schreibe die 2 als letzten Faktor und ziehe den
> > allerersten, also den für [mm]k=1[/mm], das ist [mm](n+1)[/mm] zu der 2 nach
> > hinten.
> >
> > Dann steht da ausgeschrieben:
> >
> > [mm](n+2)(n+3)\cdot{}\ldots\cdot{}(2n+1)\cdot{}2(n+1)[/mm]
> >
> > Und das ist
> > [mm](n+2)(n+3)\cdot{}\ldots\cdot{}(2n+1)\cdot{}(2n+2)[/mm]
> >
> > Und wie kannst du das schreiben?
>
> Also die (n+2)(n+3)*... kann ich als Produkt von (n+1+k)
> schreiben,aber was ist mit (2n+1)(2n+2) ?Das kann ich doch
> nicht anders schreiben.
> > > ziehen,aber das darf ich doch nicht einfach so machen bzw.
> > > ich muss das doch umformen oder?
Wo willst du hin? Zu [mm] $\prod\limits_{k=1}^{n+1}(n+1+k)$
[/mm]
Sc´hreibe das mal aus: [mm] $..=(n+1+1)\cdot{}(n+1+2)\cdot{}\ldots\cdot{}(n+1+n)\cdot{}(n+1+n+1)$
[/mm]
$=(n+2)(n+3)....(2n+1)(2n+2)$
Und genau das steht oben doch beim
>
> Also ich hab jetzt
> [mm](\prod\limits_{k=1}^{n}(n+k))\cdot{}(2n+1)*(2n+2).[/mm]
>
> Darf ich die Klammern um die Summe schon weglassen oder
> nicht?Eigentlich doch nicht oder?
Gruß
schachuzipus
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:44 Fr 26.11.2010 | Autor: | Mandy_90 |
Ok,jetzt hab ichs.Vielen Dank
lg
|
|
|
|