www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Logik" - vollständige Induktion
vollständige Induktion < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: So korrekt?
Status: (Frage) beantwortet Status 
Datum: 17:34 Di 28.11.2006
Autor: Juuro

Aufgabe
Beweisen Sie mit vollständiger Induktion: Ist [mm] n\in\IN [/mm] und [mm] n\not=1, [/mm] so existieren a, [mm] b\in\IN_0, [/mm] so dass n=2a+3b

Ich habe folgendes gemacht:

n = 2a + 3b
2 = 2*1 + 3*0 = 2
n + 1 = (2a + 3b) + 1
2a + 3b + 1 = 2a + 3b + 1

Kann man das so stehen lassen?
Ich wüsste nicht wie ich das anders beweisen soll...

Schonmal vielen Dank, Juuro!

        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 17:46 Di 28.11.2006
Autor: leduart

Hallo
Nein, du musst ja ein [mm] b'\ge [/mm] 0 und ein [mm] a'\ge [/mm] 0 angeben, und du kannst NICHT sagen 3b+1=3b', oder 2a+1=2a' also ist dein Beweis noch nicht fertig.
Du musst überlegen, wie du aus den alten a,b die neuen a',b' herstellen kannst.
Probiers einfach mal mit Schritten wie von 2 nach 3 oder von 7 nach 8 usw.
a,b sind NICHT eindeutig bestimmt! vorsicht mit a-1 oder b-1 , da a,b ja auch 0 sein können.

Gruss leduart

Bezug
                
Bezug
vollständige Induktion: Induktion intelligent machen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:15 Di 28.11.2006
Autor: moudi

Hallo Juuro

Der Schritt von n-1  auf n ist hier "nicht so intelligent". Viel einfacher ist es aus einer Zerlegung von n-2 auf eine Zerlegung von n zu schliessen. Allerdings musst du dann beachten, dass n-2 grösser als 1 ist, was für n=3 nicht der Fall ist, deshalb den Fall n=3 auch "ohne" Induktion machen.

Oft entsteht bei der vollständigen Induktion das Missverständnis, dass man auf Teufel komm raus von n-1 auf n schliessen muss. Nein, man darf die Induktionsvoraussetzung für alle Zahlen kleiner als n annehmen, um auf n zu schliessen.

mfG Moudi

Bezug
                        
Bezug
vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Di 28.11.2006
Autor: Juuro

Hallo moudi!

Danke für deine Antwort.

Ich verstehe nicht so ganz was du mit dem "Schritt von n-1 auf n" meinst. Ich hab doch nirgends n-1 stehen, höchstens n+1!?
Was bedeutet in dem Fall "eine Zerlegung von n"? Ein Teil von n? Also zum Beispiel 2a?

Viele Grüße, Sebastian

Bezug
                                
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:06 Di 28.11.2006
Autor: leduart

Hallo juro
n-1 nach n oder n nach n=1 ist dasselbe, wenn du bei n=2 anfaengst.
wenn du von n=2 und n=3 in 2-er Schritten weitergehst erreichst du auch alle n. Das musst du dann nur dazusagen!
Gruss leduart

Bezug
                        
Bezug
vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:02 Di 28.11.2006
Autor: leduart

Hallo moudi
da man i.A. nur den anfang bei n=1 oder 2 macht, darf man es nicht fuer alle Zahlen kleiner n machen, wenn man sich n gross vorstellt, sonst kommst du ja nicht von 1 nach 2, nach3 usw.
nur wenn du es fuer 1,2,3 bewiesen hast, kannst du spaeter n-1, n-2, n-3 benutzen usw.
Gruss leduart

Bezug
                                
Bezug
vollständige Induktion: war mir schon klar
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:23 Mi 29.11.2006
Autor: moudi

Hallo leduart

Das war mir schon klar, ich darf n-2, n-3 etc. nur verwenden wenn ich weiss, dass n-2, n-3 grösser oder gleich der Verankerung ist, das habe ich auch geschrieben.

mfG Moudi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]