www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - vollständige Induktion
vollständige Induktion < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Do 02.06.2005
Autor: Karl_Pech

Hallo Zusammen,


Ich versuche folgendes zu beweisen: [m]\textstyle\sum_{k = 0}^m{\binom{m}{k}} = 2^m[/m]. Für $m = [mm] 0\!$ [/mm] ist es klar: [m]\textstyle\sum_{k = 0}^0{\binom{m}{k}} = \binom{0}{0} = 1 = 2^0[/m]. Aber der Induktionsschritt mißlingt in beide Richtungen:


[mm] $\underline{m \leadsto m - 1:}$ [/mm]


[m]\sum_{k = 0}^{m - 1}{\binom{m}{k}} = \sum_{k = 0}^m{\binom{m}{k}} - \binom{m}{m}\stackrel{\begin{subarray}{l}\texttt{Induktions-}\\\texttt{annahme}\end{subarray}}{=}2^m - \binom{m}{m} = 2^m - 1 \ne 2^{m - 1}[/m]


[mm] $\underline{m \leadsto m + 1:}$ [/mm]


[m]\sum_{k = 0}^{m + 1}{\binom{m}{k}} = \sum_{k = 0}^m{\binom{m}{k}} + \binom{m}{m+1}\stackrel{\begin{subarray}{l}\texttt{Induktions-}\\\texttt{annahme}\end{subarray}}{=}2^m + 0 = 2^m \ne 2^{m + 1}[/m]


Was mache ich falsch?


Danke für eure Hilfe!



Viele Grüße
Karl




        
Bezug
vollständige Induktion: Hinweis
Status: (Antwort) fertig Status 
Datum: 19:14 Do 02.06.2005
Autor: MathePower

Hallo Karl,

> Ich versuche folgendes zu beweisen: [m]\textstyle\sum_{k = 0}^m{\binom{m}{k}} = 2^m[/m].

verwende doch die folgende Identität: [m]\textstyle\binom{m}{k} + \binom{m}{k-1} = \binom{m+1}{k}[/m]

Gruß
MathePower

Bezug
                
Bezug
vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:17 Do 02.06.2005
Autor: Karl_Pech

Hallo MathePower,


Danke für deinen Hinweis! Damit kann man die Aufgabe lösen:


[m]\sum_{k = 0}^{m + 1}{{m+1} \choose k} = \left( {\sum_{k = 0}^{m + 1} {m \choose k} } \right) + \left( {\sum_{k = 1}^{m + 1} {m \choose {k-1}} } \right)[/m]


Es ist klar, daß wir für die erste Summe nach Annahme [mm] $2^m$ [/mm] einsetzen können, nachdem wir den letzten Summanden abgespaltet haben. Den Wert der zweiten Summe kriegt man raus, wenn man sich von der Kurzschreibweise löst und die Summe ausschreibt:


[m]\sum_{k = 1}^{m + 1} {m \choose {k-1}} = {m \choose 0} + {m \choose 1} + {m \choose 2} + {m \choose 3} + {m \choose 4} + \cdots + \underbrace {m \choose {m + 1 - 1}}_{m \choose m} = \sum_{k = 0}^m {m \choose k}[/m]


Ich schreibe jetzt alles nochmal zusammen hin:


[m]\sum_{k = 0}^{m + 1} {{m+1} \choose k} = \left( {\sum_{k = 0}^{m + 1} {m \choose k} } \right) + \left( {\sum_{k = 1}^{m + 1} {m \choose {k-1}} } \right)[/m]

[m]= \left( {\sum_{k = 0}^m {m \choose k} } \right) + {m \choose {m+1}} + \sum_{k = 0}^m {m \choose k} \stackrel{\begin{subarray}{l}\texttt{Induktions-}\\\texttt{annahme}\end{subarray}}{=} 2^m + 2^m + 0 = 2*2^m = 2^{m + 1}. \quad \square[/m]



Viele Grüße
Karl



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]