von der Achsenabschnittsform zur vektoriellen Ebenengleichung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) reagiert/warte auf Reaktion | Datum: | 18:14 Di 17.02.2004 | Autor: | Alanis |
Hallo ihr alle,
Habe hier eine Ebenengleichung die rückwärts aufgerollt werden soll. Also von der Achsenabschnittsform hin zur normalen Ebenengleichung.
Hier die Gleichung:
[mm]x:4 + y:-3+ z:8 = 1[/mm]
mit dieser Gleichung soll ich nun auf die verschiedenen Formen der Ebene schließen. Soweit so gut. Zur Koordinatenform und den Normalenvektor finde ich noch raus, aber ich weiß nicht wie ich eine Parameterform konstruieren soll, weil mir der Ortsvektor fehlt. Ich kann zwar zwei richtungsvektoren Konstruieren, da das Skalarprodukt zum Normalenvektor null sein soll, aber wie komme ich zum Ortsvektor ?
Vielleicht kann mir jemand helfen,
Vielen Dank, eure Alanis
|
|
|