wedge product < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 01:35 Sa 07.08.2010 | Autor: | dazivo |
Hallo zusammen !
Ich wollte nur mal kurz eine Unstimmigkeit aus der Welt schaffen. Nämlich geht es um das wedge Product. Sei M irgendeine orientierbare $2n$-dimensionale kompakte Mannigfaltigkeit und sei [mm] $\omega$ [/mm] eine $n$-form. Es ist doch richtig, dass [mm] $\omega \wedge \omega [/mm] = 0$ ?
Gruss dazivo
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:03 Sa 07.08.2010 | Autor: | pelzig |
Es gilt ganz allgemein für Formen [mm] $\omega\wedge\eta=-\eta\wedge\omega$. [/mm] Insbesondere folgt [mm] $\omega\wedge\omega=-\omega\wedge\omega$, [/mm] also [mm] $\omega\wedge\omega=0$.
[/mm]
Gruß, Robert
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 04:17 Sa 07.08.2010 | Autor: | felixf |
Moin,
> Es gilt ganz allgemein für Formen
> [mm]\omega\wedge\eta=-\eta\wedge\omega[/mm]. Insbesondere folgt
> [mm]\omega\wedge\omega=-\omega\wedge\omega[/mm], also
> [mm]\omega\wedge\omega=0[/mm].
moment -- das gilt doch so erstmal nur fuer 1-Formen?
Fuer Formen [mm] $\omega, \eta$ [/mm] gilt doch allgemein [mm] $\omega \wedge \eta [/mm] = [mm] (-1)^{\deg \omega \cdot \deg \eta} \eta \wedge \omega$.
[/mm]
Bei davizo ist [mm] $\deg \omega [/mm] = n$, also [mm] $\omega \wedge \omega [/mm] = [mm] (-1)^{n^2} \omega \wedge \omega$.
[/mm]
Ist also $n$ ungerade, so auch [mm] $n^2$, [/mm] und es folgt [mm] $\omega \wedge \omega [/mm] = 0$.
Ist jedoch $n$ gerade, so folgt erstmal nur [mm] $\omega \wedge \omega [/mm] = [mm] \omega \wedge \omega$. [/mm] Das hilft noch nicht weiter.
Machen wir mal ein Beispiel: $n = 2$ mit [mm] $\omega [/mm] = [mm] dx_1 \wedge dx_2 [/mm] + [mm] dx_3 \wedge dx_4$. [/mm] Dann ist [mm] $\omega \wedge \omega [/mm] = [mm] dx_1 \wedge dx_2 \wedge dx_1 \wedge dx_2 [/mm] + [mm] dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_4 [/mm] + [mm] dx_3 \wedge dx_4 \wedge dx_1 \wedge dx_2 [/mm] + [mm] dx_3 \wedge dx_4 \wedge dx_3 \wedge dx_4 [/mm] = [mm] dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_4 [/mm] + [mm] (-1)^{2 \cdot 2} dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_4 [/mm] = 2 [mm] \cdot dx_1 \wedge dx_2 \wedge dx_3 \wedge dx_4$. [/mm] Und das ist alles andere als 0.
Falls [mm] $\omega$ [/mm] von der Form $f [mm] dx_{i_1} \wedge \dots \wedge dx_{i_n}$ [/mm] ist, gilt jedoch immer [mm] $\omega \wedge \omega [/mm] = 0$. Aber sobald man mehre Summanden dieser Form braucht, wie in meinem Beispiel gerade, kann es schiefgehen.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:02 Sa 07.08.2010 | Autor: | pelzig |
Ja danke Felix. Da habe ich ordentlich Bockmist geschrieben. Tut mir Leid.
Gruß, Robert
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:11 Sa 07.08.2010 | Autor: | felixf |
Moin Robert,
> Ja danke Felix. Da habe ich ordentlich Bockmist
> geschrieben. Tut mir Leid.
kommt vor :) Mir ist das auch mal passiert, glaub ich (aber nicht hier im Forum), weswegen bei mir gleich eine Alarmglocke im Hinterkopf losging als ich deine Antwort sah ;)
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 14:48 Sa 07.08.2010 | Autor: | dazivo |
Hallo zusammen
danke für eure Antworten! Ein banales Problem, wie sich herausgestellt hat!! Übrigens ist diese Frage bei der Definition des Index einer kompakten 4n dimensionalen orientierten, zusammenhängenden Mannigfaltigkeit aufgetaucht. Denn dort schaut man sich eine spezielle Paarung der Kohomologieklassen an und grad ein Lemma zuvor wird erläutert, dass eine nicht-ausgeartete Bilinearform [mm] $\phi$ [/mm] auf zwei endlich-dim. Vektorräume eine spezielle Basis [mm] $\{ x_1 , x_2, \dots , x_r, y_1, \dots , y_s \}$ [/mm] besitzt für die [mm] $\phi (x_i [/mm] , [mm] x_i)=1$ [/mm] gilt. Dann musste ich grad an die Poincaré-Dualitätspaarung denken und dachte, dass dort ja diese Bedingung ja nicht gilt (, weil ich fälschlicherweise [mm] $\omega \wedge \omega [/mm] = 0$ gadacht habe). Somit wäre ja die ganze Index Geschichte überflüssig und das kann ja wohl nicht sein!
Danke nochmals
Grüsse dazivo
|
|
|
|