www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Englisch
  Status Grammatik
  Status Lektüre
  Status Korrekturlesen
  Status Übersetzung
  Status Sonstiges (Englisch)

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - würfel
würfel < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

würfel: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:21 Mi 03.10.2012
Autor: aaaa1

Mit zwei regulären Würfeln wird gleichzeitig gewürfelt. Wie groß ist unter naheliegender Gleichverteilungsannahme die Wahrscheinlichkeit, dass sich die beiden erhaltenen Augenzahlen um mehr als 2 unterscheiden?

mein Ansatz:  [mm] {1,2,3,4,5,6}^2 [/mm]

es gibt insgesamt 12 Kombinationen, dass sie sich um mehr als 2 unterscheiden:

1 4
1 5
1 6 etc . , daraus folgt 12/36 = 1/3


so richtig?

        
Bezug
würfel: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Mi 03.10.2012
Autor: franzzink

Hallo,

> Mit zwei regulären Würfeln wird gleichzeitig gewürfelt.
> Wie groß ist unter naheliegender Gleichverteilungsannahme
> die Wahrscheinlichkeit, dass sich die beiden erhaltenen
> Augenzahlen um mehr als 2 unterscheiden?
>  
> mein Ansatz:  [mm]{1,2,3,4,5,6}^2[/mm]
>  
> es gibt insgesamt 12 Kombinationen, dass sie sich um mehr
> als 2 unterscheiden:
>  
> 1 4
> 1 5
>  1 6 etc . , daraus folgt 12/36 = 1/3
>  
>
> so richtig?

[ok] Ja.

Gruß
franzzink

Bezug
                
Bezug
würfel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:47 Mi 03.10.2012
Autor: aaaa1

Hier noch eine ähnliche Aufgabe:

Ein Multiple-Choice-Test bestehe aus 7 Fragen. Jeweils gibt es 2 Antworten, von denen genau eine richtig ist. Wie groß ist unter naheliegender Gleichverteilungsannahme die Wahrscheinlichkeit, dass bei zufälliger Beantwortung jeder Frage genau die erste, die zweite und die letzte Frage richtig beantwortet werden?

[mm] 2^7= [/mm] 128

Da nach der richtigen Beantwortung von drei Fragen gefragt wird: 3/128

richtig?

Bezug
                        
Bezug
würfel: Antwort
Status: (Antwort) fertig Status 
Datum: 16:54 Mi 03.10.2012
Autor: abakus


> Hier noch eine ähnliche Aufgabe:
>  
> Ein Multiple-Choice-Test bestehe aus 7 Fragen. Jeweils gibt
> es 2 Antworten, von denen genau eine richtig ist. Wie groß
> ist unter naheliegender Gleichverteilungsannahme die
> Wahrscheinlichkeit, dass bei zufälliger Beantwortung jeder
> Frage genau die erste, die zweite und die letzte Frage
> richtig beantwortet werden?
>  
> [mm]2^7=[/mm] 128
>  
> Da nach der richtigen Beantwortung von drei Fragen gefragt
> wird: 3/128
>  
> richtig?

Falsch. Es geht um den einen konkreten Pfad des Baumdiagramms:
R-R-F-F-F-F-R .
Da sowohl R als auch F die Einzelwahrscheinlichkeit 0,5 haben, ist das Ergebnis [mm] $0,5^7$. [/mm]
Gruß Abakus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.englischraum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]